ECMAScript Language Specification Edition 3 24-Mar-00

Edition 3 Final

ECMAScript Language
Specification

24 March 2000

ECMAScript Language Specification Edition 3 24-Mar-00

Brief History

This ECMA Standard is based on several originating technologies, the most well known being JavaScript
(Netscape) and JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in
that company’s Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all
browsers from Microsoft starting with Internet Explorer 3.0.

The development of this Standard started in November 1996. The first edition of this ECMA Standard was adopted
by the ECMA General Assembly of June 1997.

That ECMA Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved
as international standard ISO/IEC 16262, in April 1998. The ECMA General Assembly of June 1998 approved the
second edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second
edition are editorial in nature.

The current document defines the third edition of the Standard and includes powerful regular expressions, better
string handling, new control statements, try/catch exception handling, tighter definition of errors, formatting for
numeric output and minor changes in anticipation of forthcoming internationalisation facilities and future language
growth.

Work on the language is not complete. The technical committee is working on significant enhancements, including
mechanisms for scripts to be created and used across the Internet, and tighter coordination with other standards
bodies such as groups within the World Wide Web Consortium and the Wireless Application Protocol Forum.

This Standard has been adopted as 3rd Edition of ECMA-262 by the ECMA General Assembly in December, 1999.

The following people have contributed to the work leading to ECMA 262:

Mike Ang Clayton Lewis
Christine Begle Drew Lytle
Norris Boyd Bob Mathis
Carl Cargill Karl Matzke
Andrew Clinick Mike McCabe
Donna Converse Tom McFarland
Mike Cowlishaw Anh Nguyen
Chris Dollin Brent Noorda
Jeff Dyer Andy Palay
Brendan Eich Dave Raggett
Chris Espinosa Gary Robinson
Gary Fisher Sam Ruby
Richard Gabriel Dario Russi
Michael Gardner David Singer
Bill Gibbons Randy Solton
Richard Gillam Guy Steele

Waldemar Horwat
Shon Katzenberg
Cedric Krumbein
Mike Ksar

Roger Lawrence
Steve Leach

Michael Turyn
Herman Venter
George Wilingmyre
Scott Wiltamuth
Rok Yu

ECMAScript Language Specification Edition 3 24-Mar-00

Table of contents

|'1'SCO'p'e .. |
PCOMTOTINIANCE ... s st e TR e T TSt e e TS e T e e LTt e et E S et et e et nerE et et e et ae T
P‘N‘GrmatWE‘R'éfE'rEn'Cé's .. Ul
AL Lo S 3
R T T T 3
1.2 LaNQUAGE OVEIVIEW.......ccceiiiiuiiiiieiiee e e eeeteeeeee e e e e e ettt e eeeeeea s aataeeeeeeeeaaaansteseeeaeeesaanssseseeeaessannssseneeaaeeesaanssssnneeaanens 3
PR 4
B3 DIEFINITIONS ..ottt e et et et et eateateateateeeneaseaseateateateateat eet s et et Lat et ee et eateatLateateatietintintistrtertis 5

A R T 1/ 1Y PPN S
.3.2 PHIMIEIVE VAIUE ..ottt e e ettt e e e e e ettt eeeeeeeeeeeeesbaaaaeeaeeseessnnnaaaaaaaees 5
YO o= 9]
R N oo Y) (U Tes (o) o — 5
Rl (0 (o4 oY PP PP PPPPPPPPPRt 5
RO N =Y (AN O o] (=Y o] (T PP P TR 6
R A =TV T o T o [Tt SO PP PPPPPPPRt 6
R Lo T O o) T 6
1.3.9 UNAEIINEA VAIUEuvuvieiiiiiiiiiiitiitittttt ettt etetetetetete e et ete s et et e eeteteteeeeeeeeeseennnnssnsnnnnnnnsnnnnen 6
RN i e B <L YT 6
T I U TuT= 6
.31 2 INUIL T D ..ttt sttt sttt sttt sttt ss s s s s s s sssssesssssssssssssnsssnssssnsns 6
.3.13Boolean Value........o 6

R T oo To Lo L R T T 6
SRR Rl = Te o] (=T A I ©] o) = Tox A PP P PP PPPPPPRt 6
B.3.16 STHNG VAIUE ...ttt ettt e e sttt e e e st et e e sttt e e sabeeeeeaabeeeeeabbeeeeaanreeeeaan 6
T AR (g TaTo T I o L= PP PP PPPPPPPRt 6
R S (o Vo IO o] [T A PP 7
S N VT 0 0] o Y=Y V= U= PO 7
I T oY I = 7
1.3.271 NUMDEE ODJECE uuueeieieiiieiiiieeieitteet ettt et atetstetesetstssnsssssesssnsnssnesseseeeeseeesenesnsnnnnnnnsnnnnen 7]
I T 7
I T N =T T 7
15 NOtatioNal CONVENEIONS ...ueceiieieseiseieseisrisserssisseeesasesssasssessassssnssassasesassansasessnssssassseassassesssanssssansssssssssneansassesassnsasnesas 9]
E% Syntactic and LexXiCal GIramMIMAIS...............ouvueuiiiiiiiiiiiieeei et e e e e e e e e e e e e e e e eeeeaeaaaeaeaaaaeas 9
1.1 CoNEXE-Fre@ GrammMarScooooiiiiiiiiiie e 9
b.1.2 The Lexical and REGEXD GIraMMaAIS............coouuuiuuuueeeiiiiiieeeeee e ee e e e et eeeeeeseeeseeeeetnnnsessaeeseeesennnnseseeee 9
b.1.3 The Numeric String Grammar. ... 9
B.1.4 The SYNACHC GIramMIMar.......cccvuueeiiiiieeeee e e ettt ee e e e e e et eeeaeeeaeeseeennesnnnanseeeseeesnnnnnneeeees 9

5.1 S Grammar Notation ... 10
B.2 AlGOtNM CONVENMTIONSoocviiieieieieiieieietieetiestiesisssesseseesseeseessessssssnsesssasseasseesssessesanesannesnesnnesnsssnsessseessesssess 12
IB SOUICE TOXE....eereeeereeeriseneeeasmerasneeiasersssnresssneesssresssnesasnseassneessssesssneeassesasnssssnseasaneeasnsesanesasnsensasesnsnsesssesssnssnsanesssnees 15|
W ... 17
1 Unicode Format-Control CRaracters ..., 17|
/.2 WINITE SPACE ...iiiiiiiiiiiiiiiiiiii ettt ettt ettt ettt ettt ee e et e eeeeeeee et et e e rraeeeeeaaeeeaaaaeaaaaaaaaaaaaaaaaaaaaaas 17
TR T =T 0 0 [T = (o) PPN 18
T o] 1010 =T 0 (PPN 18
mokens ... 19
. RESEIVEA WOTAS ...ttt e ettt e e e e e ettt e e e e ae s e et e e e s eaeseeessseeetannaaeeaeseessnnnnnaaaesees 19

ST G e F- 3 — 19
7.5.3 FULUIE RESEIVEA WOITSo it e et e e e e et ettt eeeeeeeeeeseaeeesaesseebeeesnnaseeeserernsnnnanss 20
V.6 1dentifiers ..o 20
T VT Tos (U= (o) TP P PP PP PPPPPTN 21
T8 LIETAIS oo ioseoeoesoseeeoseesesesesseeereeseeeneeeeseneereeeeeerereeeereeereerereers 21

ECMAScript Language Specification Edition 3 24-Mar-00

8.1 N UL O aIS ...ttt iee e e i ettt et et e ettt et e e et e ettt e eeeeee ettt et e eeeeeesasaneteeeeeaeeeaaanssbeeeaae e nsstsseeeeeeeaaannnsssnesaaeesaannnes 21
V.8.2Boolean Literals. 22
TSR3 N 8T =T o I =T = PP PPPPPRt 22
7.8.4 S N Y T 24
/.8.5 Regular Expression Literals ... 26
.9 Automatic SEMICOION INSEITIONo.vvvveeseeeeeneeeeeeneneeeeeeeeeeseeeeneeeeeas 26
/.9.1 Rules of Automatic SEMICOION INSEITIONuuuiei e eeeeeeeeeeeeeeenes 27
/.9.2 Examples of Automatic SemiCOloN INSEMION.....ttt atetebsbabsbsbsbsbsbsbsbsbeesesessssesnees 27
T 31|
B.1 The UNAEfINEA TYPE ...ttt bttt e ettt e e e sttt e aasbe e e e sabbesans bt eeeasbeeesasbeeesannrees 31
B.2 THE NUI Ty D8 ittt ettt ettt ettt eeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeeeeaaaeaaaaaaaaasaaeaaeasaaaeaaaaaees 31
B.3 The BOOIEAN TYDE ..ot e e oot ee e et e ee e et eeeeeeeeeeeeeeeeeeeeeeteaeeeeeeaaeaeaaaaaaaaaaaaaaaaaaaans 31
B4 The String TyYPe. .o 31
B.5 The Number LTy 31
R EX O N R N T 32
B.6.1 PrOPEIY AbTIDULESuuiiiiiiiiiiiiiiiiiiiiiiitiiiti ittt teteatae et etetststs st s st st st s st st e e e e s s s e e e s seeeeenaennnnnnnnnen 32
B.6.2 Internal Properties and METNOUASoiieuuiiiieeeeeee ettt e e et eeeeeeeeesetaeaeennnnnns 33
AR o e oYY 35
B. 7.1 GEIVAIUE (V) .eteeeiiiiiiiiee oottt e oottt e e e e e s et e e e eeee e e e anteteeeeeeeeeannteeeeeeeeeeaannrrreeeeeeeeaannrs 36
A Y Y YA T 36
BThe List TYPe ..o 36
X ST T e e LT 7 oY= T — 36
D TYPE CONVEISION........ooooeeeeeeeereeseeseeeeeeeeseeeeeseeeeeseneseeeeeseeseeneeeeeeeeeeeeseneeseeseeeeeeeeeseeneeeeeseeeeeneesseeeeeeeeeeeseeeeseeeeeneeeeesaee 37]
S o) T T = 37
D.2 TOBOOICAN ..ottt ettt et eeeeeeeeeeeeereeeeeeee—eerteaeaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaans 37]
m Lo T oY 37
D.3.1 ToNumber Applied t0 the SIHNG TYDEc.veiueeieiiieiiieeieeeeeeeeieieeeseeseraeeeeeseeessessesenesenesesssesneesessnseesseesseesnees 38
A T O OGO oo ettt et e eeeeeeeeeeeeteeeeeeeteeeaeeeeeteaaeaaeaaaaaaaaaaaaaaaaaaaaaeas 40
.5 ToInt32: (SIgNEd 32 Bit INTEGET) ...ciiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeee ettt ettt ettt eeeeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaaaaaaaaaeens 40
.6 ToUint32: (UNSIGNed 32 Bit INTEGEI)couiiiiiiiiiiieiie ettt e et e e e st e e e e e e asnbeeeeennreas 41
D.7 ToUint16: (UNSIgNed 16 Bit INEEGEI)oovvveveeeieieeieiee e 41
N S T T 41
D.8.1 ToString APPlEd t0 the NUMDEE TYDEvveeneeeeneeneeeeneeneeeeeanneeeeenenee 42
R RN =Y S 43
10 EXQCULION CONEEXLES ..veeiuersseresereseenssersseesssessssssssssnsessssssssssssssnssanssanssssssssnsssnsssssssssssssssssssssssnsssnsesssessssssnsssssssnsssssens 45|
[10.7 DEIINIHIONS ..ottt et e ettt e et e e ant e et e eaneeasaseeesneeeanteeneeesnteeesnseesnseesnseeesnseeesseenn 45
(O ST Te e A O 1 Y =Yoo 45
10.1.2 Types of Executable Code ... 45
10.1.3 Variable Instantiation.......... BSOSO P PT PP PP PSP PSPV PPV PPPOPPPPPPPPOD 45
10.1.4 Scope Chain and Identifier RESOIUTIONueciieieiiiiiee et e et a e e e e e eteteeeeeaaeeeaannes 46
(eI Te] TN O o) Y SO 46
[10.1.6 ACHVALION ODJECT ...ttt e ettt e e se et e esb e e e e snbeeeeaanbbeeeeanneeeeas 46
(LS T r N T 47
10.1.8 Arguments Object. ... 47
f10.2 ENtering AN EXECUON COMEEXEveeeeeeeeeeeeeeevreveverereeereeeeeeeesesesesesesesesesesesesesesesesesessesesesesesssesececeeecas 47|
AT Y e Yo oY — 47
10.2.2 EVAI GOueeeiiie ittt e ettt et e e et e ettt ee et eeesansteeeeeeeeeaanssseeeeeaaeeansseseeesasessansnsenneesesesanannes 47|
R ST eI O Yo Lo 47
11 EXPI@SSIONS ..ueeveerieeresereserseessesssessssenseesssessssesssesssesssessssssnssanssanssassesnesanssansssnsssssssssesssssnssanssensssssesssessnessnsssnsesssens 49|
[[1.1 PrM@ry EXDrESSIONSe.eeieeieieeeeeteeetieeeeeeee et eieeeteeeteeeseaeeaeeeeseeeseeeaneesneeaneeenseenseeseeesseesneesnsesnsesnseenseesseesnees 49
(P S T N o T o S = =AY o PP 49
TN G T R =T e T — 49
[11.1.3 LItEraI RETEIENCEuvuviiiiiiiiiiiiii ettt atetetatetetststasassssseeeseeeeeeseseeneennneneennnnnen 49
N A T Y= 49
[11.1.5 ODJECE INITIAIISENttt ettt st st s et e s s s e s s sesesesesnsennnnsnnnnnnnen 50
11.1.6 The Grouping Operatoro 51
1.2 Left-HaNA-SidE@ EXDIESSIONSc.veeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeseseeereesesesenensesesrensesecesssmsesesreeseeesersnsess 51

ECMAScript Language Specification Edition 3 24-Mar-00

[11.2. 1 PrOPEITY ACCESSOIS.....eeueeieeeei ettt ettt e et e e et e et e e e e e e e s e e eeeetnneeeeeennseeeennnneresnnneeennnnnne 52
(R A N T o T N O o 1= T = (o] PP PPPPPPPPPRt 53
[11.2.3 FUNCHON CallS ..ot e oottt et e et ettt eeeeeeeaasteteeeeeessesntseeeeseeeaaansseneeeseeesaansnes 53
(P X e IO =T I o 53
11.2.5 Function EXPressions. ... 54
h_’ .3 Postfix Expre33|ons ... 54
11.3.1 POStiiX INCrement OPerator............oooii it e e e eeeeaaaeeeaannes 54
11.3.2 Postfix Decrement OPEratoroooiii i e e e et e e aaeeaaaeeeeeeeaaaaaanneeneeeeeeeaaannes 54
1.4 Unary Operators .. o 54
(I I I L= TSR R o Y @ o =T = (o) PR 55
(R N e Ko @ o =T = | (o) PP 55
11.4.3 ThE £y D@ O OO Or . . et etttittttttttttteteteteeeeeseet ettt ettt sssssssssssssssssssssssssssssnsssssnnnes 55
[11.4.4 PrefiX INCremMeEnt OPEIatOr.ttt e e e e e eeeaeeeaaannes 55
11.4.5 PrefiX DECIEMENT OPEIATONuuuutiiitititiiiiitieeeieeeeteteteeetteeteteeeeeseeeessessseeessssessssssssssssssesssesenessssssssssssnssnnnne 56
[11.4.6 UNGIY + OPEIATOT......ueiiiii e i ittt ettt e e e e ettt e e e e e e e et eeeeeeeeeaaasteeteaaeeesaaasssseaeaaaeesaaasseeaaeeesannsne 56
(R A =T A o= = Lo PP 56
(R R ST Y N (O I O oYY =1 (o] (e I PNt 56
11.4.9 Logical NOT Operator (1) ... 56
[11.5 MUHIDICAtIVE ODEIALOTSot eeeeseeseeeseseeseesssseesssesessesessesessesasssseessssssesassrssssnsasssssrssssnens 57
11.5.1 APPIVING the * OPEIAtONuuuuuiieiititit ittt ettt tetetebetebebebeuebeesesbetsbsesesesesessssssssssssssssssssssnnsnnnes 57
[11.5.2 ApPIYING the / OPerator. .. cuuuie ittt ettt ettt ettt ittt 57
11.5.3 APPIYING the & ODEIatON .. ottt e oo ettt eeeeeesa et eeeeeeesesaassbeeeeeaesesanssseeeeaseaansnes 58
(1.6 ADItIVE OPEIALOISviieieieeieieee ettt 58
(SR N TR aNe Lo (Lo Y g o] oT=Y =Y (o) o (e PPNt 58
11.6.2 The Subtraction OPerator (=)......iiiii it e e e e e e e e st st eseeeeisaaseeeeeeeeeeseaannreeeesieesaaas 59
1.6.3 Applying the Additive Operators (+, -) tO NUMDErS..........cccoiiiiiiiiiiiiii e 59
[11.7 BIEWISE SRt OPEIAIOISceoeiieiieei ettt eat e s e eneeeas 59
11.7.1 The Left Shift OPEIATOI (€<)uuuuuuiiiiiiitiiiiiiiiiitiittitttitetetetet et etatttetebabatetabebaessssasessssssssssssssssssssssssnnnsnnsnnnnnnnnnnnn 60
11.7.2 The Signed Right Shift Operator (5>) .iiiiiuiiii ittt see et e e s s e e s s e s e 60
11.7.3 The Unsigned Right Shift Operator (>>>). 60
fl11.8 Relational Operators. ..o 60
11.8.1 The LeSS-Than OPEIrator (€)uueiiiie ittt e e et e ettt et aaee e e e et eeeeeaaeeeeaannreeeeeaaaeaaan 61
11.8.2 The Greater-than OPEIATOF (>).......uuuuuieitiiiieieieiietitetetitetieetueeteeeeebebeeaeseaeeeseasesssnsnsesnsssssssnsssnsnsnssnnsnnsnnnnnnnnn 61
11.8.3 The Less-than-or-equal OPerator (<=) ... e e eeeeeesaeeeeeereeeeeeaaans 61
11.8.4 The Greater-than-or-equal OpPerator ((>=)uuuuuureeeeeeieteeeeeteteteteteteteeeteteeeestetetetsteeeeeeetesseeseseseesesseeessenenees 61
11.8.5 The Abstract Relational Comparison AlGOrThMuuvuuuuuuereieieiiiiieieiiiiieiiiiteieeeeeeeteeeeeeeeeeeeeeeeeeveeeeeeees 62
11.8.6 The iINStANCEOT OPEIAION .. .o ittt e e e ettt e eesesaat e eeeeeeeaanebeeeeesesesaannes 62
(R A N T oY= = L (o T 62
[11.9 EQUAIIEY OPEIATOISeeeeeeeeeeee ettt e e et e e e eaneeeameeeseeeamteeeameeesneeeeaneeeaneeenneeas 63
11.9.1 The EQUAIS OPErator (==). ittt e sttt s et s st et e et e s e s s e s 63
11.9.2 The Does-not-equals Operator [T T o 63
11.9.3 The Abstract Equahty Comparlson AlGOTTERM .. 63
11.9.4 The Strict EQUAlS OPErator (===) iiiiiiiiiiiiiiiiiiii it ittt eeessis sttt e e eeeteseiaaassreeeestaeeesaasrsseeesasesasassnresnesaasaaans 64
11.9.5 The Strict Does-not-equal Operator (==). 64
11.9.6 The Strict Equality CompariSON AlGOTtNMuuuuuuuurureriririeirieeeetiteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeseeeeenee 65
11.10 BiNAry BIitWISE OPEIAtOrScc..uiiiiiiieii ettt et a e e e et e e et e e aaabeeaeannreas 65
11.11 Binary LOGICal OPEIatOrsSoiuiiiiiiiiiiiie ettt e e e eeeeeeea e s eeeeeaaeesasnneeeeeeaeesaaanneneeeeaaaass 66
1.12 Conditional OPErator (2 :) c.eiiiiioiiiiiiiiiii ittt ettt 66
R e e N, 67
11.13.1 Simple AssSigNMment (=). 67
11.13.2 COMPOUNT ASSIGNIMENT (O).uvvvvviverieireiitieieeieeeieeeeeeeeeueevueesesesesnsnsnsnsnsnsnsnsnsnsnsnsnsnsnnnsnsnnnnnnnsnnnnnnnnnnnnnnnnnn 68
RSO e & D N 68
(12 StAEEMENESeiieeiee i e e e a e e E e E e p e a e s ae e arnan 69
2 =TTy PP 69
12.2 Variable Statement.t e e e e e e e e e s e aaeeaaaaaaas 70
PR ES G010 ST 71
2.4 EXPression Statement ... 71]
12,5 The 1 f S At . o o ittt ii i i ieie it ieieieteteteieteeeeeteteteteeeteteteteeerereeetereeeeeaaaaaaaaaaaaaaaaaaaaans 71

ECMAScript Language Specification Edition 3 24-Mar-00

[12.6 HEFAtION STAIEIMENTS ...t e et ee e e aeeeeneeeeeeeneeeeeaeneeeeenanneeeanneseeeanneseeeeeneeeeeanneee 72
(P N oo o e S N] =1 (=) 4 =) 0| T 72
12.6.2 The while StatemMEnt.. . .ottt e e e e et eeeeet e eeeeeeeeeetenaeeeeeseeesssnnaaesesereeeernsnnnanss 72
12.6.3 The for Statementoeeeiieii ittt 73
12.6.4 TNE FOT-001 SEAIEIMENT.oooooossssosoreoosesososseeeseessseseseeesereeeeseeeeeeeeeeeeeeeeseereeeseeeeeereseeeeeeeeeerereeererererees 73

2.7 The continue StatemMeNto it 74

12.8 The break StatOMENT.... ...ttt ee e e e 75

12.9 The returnl STAEMENT . ..ottt ettt et e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeerereseseeaaeaaaeaees 75

(P2 O TN S R ol W] €= (=Y 0 g 1= 0) PP 75

2.11The switch StateMENT ... oottt e et e e et et ettt e it e e et e e e et e e e e e e e et rr e e e 76
A W= (o1 1 L=Ye S =) (=T 1Y 0 PPN 77
(P T N A TS o o B o)] =) (=10 01 0L P PP PP PP 77
(P2 (oW o e Y e= 1 (=Y 0 1= o | PR 77
(13 FUNCHION DOFINIEION ...c.evereseiiieeeiesueereseeissseeresneeseseessseesssneessssessansesessesssseesesnsessssesssssesessessnssssasesesnssssssessssesssnsesssnes 79

[13.1 (DL Ta o R TP T T T TP U — 79
13.1.T Equated Grammar PrOQUCTHIONS.............oooouueiiiii oo eeeeeee e e e e e eeeeaeeeeeeeeeaaaaeeaeeennes 80
(I Lo T Yo I oY T= et 80

[13.2 Creating Function Objects ... 80
(EZ 1) O 81
[13.2.2 [TCONSIIUCE]T ..ottt ettt e e e e e e e e e et s eeeaeeeeetennnnaeseaeseeesnnnnnseeseeennnnnnnnns 81

L ST 83|
5.1 THE GIODAI ODJECToooooooooooooossoooooooooooooooooooooeooioosoeesseeseseeeeeseeeseseesereeeeseeereerereereerereereeeees 85
15.1.1 Value Properties of the GIObal ODJECT.................ciiiiiiiiiiiiiic et e e e e e e e e e reaaeeeeaannes 86
15.1.2 Function Properties of the Global ODbJjECEccoccuuuiiiiieieeiee et eeeeaae e e 86
15.1.3 URI Handling Function Properties...............oooe 87
15.1.4 Constructor Properties of the Global Object .. 91
15.1.5 Other Properties of the Global Object ... 92

[15.2 ODJECE OBJECES..........cveeeeeeeeeeeeeeeeeeeeeeeeeeeee e e ee e eeeneeeee e enseseeeeenseseeesanseensnnsessnseenenssnsnsessanseeneaeansnns 92
15.2.1 The Object Constructor Called as @ FUNCHONcccooiiiiiiieeee et 92
15.2.2 The ODJECE CONSIIUCTONovvviiiiiiieeeee ettt e e e eeee e e e e ans 92
15.2.3 Properties of the Object Constructor.................coo 93
15.2.4 Properties of the Object Prototype ODbJect...... ... 93
15.2.5 Properties of Object INStances ... 94

M15.3 FUNCHON ODJECES -..ovooooooooooooooioooooiossooooososoossoososoooeosseossseseeereeseserseeeseneereseereesesreeereereseesereeeerereereerereenes 94
15.3.1 The Function Constructor Called as @ FUNCHON................uuuuvuuerurireierereeeerrererererereereesrrereeeree.————————————————— 94
[15.3.2 The FUNCHON CONSITUCTONuuuuiiiiieiiiiiiiititiiieetieeseeeuarasasasesesesesesesesssesssssesesssssssssssssssssssssssssssssssssnssssnnnnnes 94
15.3.3 Properties of the Function Constructor ... 95|
15.3.4 Propertles of the Function 010187 X O YT 95
15.3.5 Properties of FUNCHON INSTANCESuueiiiiiiieeeeee e e e e e e e e et eseeeeereensnnnanes 96

[15.4 ATAY ODJECESeoueeeeeeeeeeeeeeeeee ettt te e e eteeeteeeueeeseeeeeeeteeeseeeneeeneeenseeseesseesseesneeenseenseenseesseeases 96
15.4.1 The Array Constructor Called as @ FUNCHONooiuuiiiiiiiiiiieee e 97
15.4.2 The Array CONSITUCTON ...oii ittt e e e e e et eeaaeeeaaanneeeeaeesaaanneeneeeeeaeaaannes 97
15.4.3 Properties of the Array Constructor. ... 97
15.4.4 Properties of the Array Prototype ODJECToooii i 98
15.4.5 Properties OF AITAY INSEANCES ...ttt e e e e e e et ee e seeeseseeennnnanns 105

5.5 SHUING ODJECIS....oooooooooooooooooooioooiooioooiossonoseoseseoososeseossseeeeesseseeereeseeereesereeseerereereeereeeerereeeereeereereeens 106
15.5.1 The String Constructor Called as @ FUNCHONcoiiiiiiiiiiiiiiiieeccccciieiee e e e e eccee et e e e e e e ervaaeeaeeeanennes 106
15.5.2 The SHIING CONSIIUCTON ...ieeeiiieeeieeee et e e ettt e e e e e e ettt eaaeesaaannteeaaeesasnnteeeeeaaneaaaannes 106
15.5.3 Properties of the String Constructor.........oo 106
15.5.4 Properties of the String Prototype ODJECK.uuuueeeeeeeuereteeieitireteteterevetererererereseseseseeeseeeseseeseeeseeeeeeeeee 107
15.5.5 Properties of String Instances ... 114

[15.6 BOOIEAN ODJECES ... e en e eeeeneeeeeenenseseeenenanneseseensnsneeensnseensasaneneneas 114
15.6.1 The Boolean Constructor Called as @ FUNCHONooovuuuiiiiiiieeeeee et 114
15.6.2 The BoOIEaN CONSITUCKONcccooiiiiiiiiie ettt eee e e e e e eenaanns 114
15.6.3 Properties of the Boolean Constructor..................co 114
15.6.4 Properties of the Boolean Prototype ObJjeCt..........ooiveeeiiiiiiiiieee e 114
15.6.5 Properties of BOOIEAN INSTANCESiiiiiiiiiiiiiiiieieeeee et e e e et seeeaeeeeernnnanas 115

ECMAScript Language Specification Edition 3 24-Mar-00

FR AN e 115
15.7.1 The Number Constructor Called as @ FUNCHONooviiiiiiiiiiiiiiieeeeee e 115
15.7.2 The Number Constructor ... 115]
15.7.3 Properties of the NUMDEr CONSIIUCIONccciiiieiiiiiiie et e ettt e e e e e e eteeeeeaeeeaaannes 115
15.7.4 Properties of the Number Prototype ODBJECE.uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii it eeeeeeeeeeeeeeeeeeeeeeeeeees 116
15.7.5 Properties of NUMDEI INSTANCEScoii e 119

R O = S 119
15.8.1 Value Properties of the Math Object...............coo 119
15.8.2 Function Properties of the Math Object ... 120

(I Y e 125
15.9.1 Overview of Date Objects and Definitions of Internal Operators..............ooooooon 125
15.9.2 The Date Constructor Called as @ FUNCHON................oiiiiiiiiiiiiiiiiiec et e e e et eaeeeeeeanns 129
15.9.3 The Date CONSIIUCTON. ... ii ittt e e e ettt e e e et e ettt e eeeeeeaautteeeeeeaeeseaanesteseeeaeessasssseeeaeesaannssnneeaaeesanannns 129
15.9.4 Properties of the Date CoONSIIUCION ...t 130
15.9.5 Properties of the Date Prototype Object...............cocoo 131]
15.9.6 Properties 0f Date INSTANCES...........uuuiiiiiieiee ettt e e ettt e e e e e eennteeeeeaaeeeaaanees 137

[15.10 RegExp (Regular Expression) Objects..........cocooe 137]
(I Y LT — 137
15.10.2 Pattern SEMANTICS.....ccooeeieeeeeeeeeeeeeeeee ettt e et eee e e e e e e e e e eeaaeaeeeaeeeenrnnnanns 139
15.10.3 The RegExp Constructor Called as a Function ... 151
15.10.4 The RegEXp Constructor ... 151
15.10.5 Properties of the REGEXP CONSIUCTONcooiii it 151
15.10.6 Properties of the RegExp Prototype Object...............oooiii 152
15.10.7 Properties of REGEXDP INSTANCESccuuuiiiiiiiiiiiiiic ettt e e e e e e et aeeaaaeeeaannes 153

FEEE e 153
15.11.1 The Error Constructor Called as @ FUNCHONvvviiiiiiiiiieeeeeeeeeeeeeeeeee e 153
15.11.2 The Error Constructor ... 153
15.11.3 Properties of the Error CONSITUCION............uiiiiiieiiiieee ettt e e e e et eeeeeaeeeaaannes 154
15.11.4 Properties of the Error Prototype Object.................oooooe 154
15.11.5 Properties of Error INSTANCESuoi i 154
15.11.6 Native Error Types Used in This Standardccccuuuuuuiuiuiiiiiiiiiiiiiiieiiiiieieiiieieeereeereeerereeeseeeeeeeeeeeees 154
15.171.7 NatiVEEIror ObjECE StrUCTUN ... e iii ittt e ittt e e e e e i e e ittt eeeeaeesaaaseebeseeeseesiaasssbeeeeaeesesaasnrsneeaessassnes 155

T 157|
/P 159

B =y or= T =10 0] 0= ST 159

2 NUMDEE CONVEISIONSvueieieeeeeeeeee ettt e et e e e et aea e e e e e e e et eta e e e e e e e eeeeeeannaannnnaeeeeensnnnannn 164

S XD ESSIONS .ot e ettt eeeeeeett— b eeeeeeteetenna—aeeaeteeernraeeeeerrrrrannns 165

S L T — 169

A5 FUNCHONS AN PIrOGIaMS ...ttt et e et e e e e e e e e e e eee et eaeennnaesennnneeeennns 171

A.6 Universal Resource Identifier Character ClaSSesoooiiivuveiiiiiiiiieeieeoeeeeeeeeeeee e 171

A7 REGUIAT EXDIESSIONS ...cevvuiiieeeeieeeee ettt e et e e et e e e e e e e e e e e e e eeeenneeeeennaeaeennnsesennnnneeennns 172

| SO T T Y 175|

R IS e 175
B. 1.1 NUMEIC LItEIAISttt eeeeeeeeeeeeeeeeeeeeeees 175
B.1.2 String Literals........o 175]

B.2 AQQItIONAI PrOPEITIES ...t e e e eee e eee e eeeneesenaenensenenensenseennsenensesnsneenseeaes 176

Y Tor= T o LY (S T O 176
2.2 UNESCAPE (SN .ottt e bttt e ettt e e sttt ee e sttt e e e aabe et e e sttt e e aabbeeeeabreeeeabreeeeaans 177
B.2.3 String.prototype.substr (start, 18NGth)uuuiiiiiiiiiii e e rereeeereeees 177
SR N W oI e (018 oI e [A =Y | (PP 178
2.5 Date.prototyPe.SEEYEAI (VEAI) e aaas 178
2.6 Date.prototype.tOGMT SIIING () «eeeiiutiiiiiiiiiii ittt e e sttt e s sttt eesssteeeeessbbeeassasbeeeesanbeessbeeeessaseeeesane 178

ECMAScript Language Specification Edition 3 24-Mar-00

1 Scope
This Standard defines the ECMAScript scripting language.
2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties,
functions, and program syntax and semantics described in this specification.

A conforming implementation of this International standard shall interpret characters in conformance with the
Unicode Standard, Version 2.1 or later, and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the adopted
encoding form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise specified, it is
presumed to be the BMP subset, collection 300. If the adopted encoding form is not otherwise specified, it
presumed to be the UTF-16 encoding form.

A conforming implementation of ECMAScript is permitted to provide additional types, values, objects, properties,
and functions beyond those described in this specification. In particular, a conforming implementation of
ECMAScript is permitted to provide properties not described in this specification, and values for those properties,
for objects that are described in this specification.

A conforming implementation of ECMAScript is permitted to support program and regular expression syntax not

described in this specification. In particular, a conforming implementation of ECMAScript is permitted to support
program syntax that makes use of the “future reserved words” listed in section [.5.3]of this specification.

3 Normative References

ISO/IEC 9899:1996 Programming Languages — C, including amendment 1 and technical corrigenda 1 and 2.

ISO/IEC 10646-1:1993 Information Technology -- Universal Multiple-Octet Coded Character Set (UCS) plus its
amendments and corrigenda.

Unicode Inc. (1996), The Unicode Standard™, Version 2.0. ISBN: 0-201-48345-9, Addison-Wesley Publishing Co.,
Menlo Park, California.

Unicode Inc. (1998), Unicode Technical Report #8: The Unicode Standard”™, Version 2.1.
Unicode Inc. (1998), Unicode Technical Report #15: Unicode Normalization Forms.

ANSV/IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical and Electronic
Engineers, New York (1985).

ECMAScript Language Specification Edition 3 24-Mar-00

4 Overview

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be computationally
self-sufficient; indeed, there are no provisions in this specification for input of external data or output of computed
results. Instead, it is expected that the computational environment of an ECMAScript program will provide not only
the objects and other facilities described in this specification but also certain environment-specific host objects,
whose description and behaviour are beyond the scope of this specification except to indicate that they may provide
certain properties that can be accessed and certain functions that can be called from an ECMAScript program.

A scripting language is a programming language that is used to manipulate, customise, and automate the facilities
of an existing system. In such systems, useful functionality is already available through a user interface, and the
scripting language is a mechanism for exposing that functionality to program control. In this way, the existing
system is said to provide a host environment of objects and facilities, which completes the capabilities of the
scripting language. A scripting language is intended for use by both professional and non-professional
programmers. To accommodate non-professional programmers, some aspects of the language may be somewhat
less strict.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web
pages in browsers and to perform server computation as part of a Web-based client-server architecture.
ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore the core
scripting language is specified in this document apart from any particular host environment.

Some of the facilities of ECMAScript are similar to those used in other programming languages; in particular Java™
and Self, as described in:

e Gosling, James, Bill Joy and Guy Steele. The Java Language Specification. Addison Wesley Publishing Co.,
1996.

e Ungar, David, and Smith, Randall B. Self: The Power of Simplicity. OOPSLA '87 Conference Proceedings, pp.
227-241, Orlando, FL, October 1987.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance,
objects that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies, and
input/output. Further, the host environment provides a means to attach scripting code to events such as change of
focus, page and image loading, unloading, error and abort, selection, form submission, and mouse actions.
Scripting code appears within the HTML and the displayed page is a combination of user interface elements and
fixed and computed text and images. The scripting code is reactive to user interaction and there is no need for a
main program.

A web server provides a different host environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side
scripting together, it is possible to distribute computation between the client and server while providing a
customised user interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Language Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This overview is
not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript
program is a cluster of communicating objects. An ECMAScript object is an unordered collection of properties
each with zero or more attributes that determine how each property can be used—for example, when the
ReadOnly attribute for a property is set to true, any attempt by executed ECMAScript code to change the value of
the property has no effect. Properties are containers that hold other objects, primitive values, or methods. A

3

ECMAScript Language Specification Edition 3 24-Mar-00

primitive value is a member of one of the following built-in types: Undefined, Null, Boolean, Number, and String;
an object is a member of the remaining built-in type Object; and a method is a function associated with an object
via a property.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These built-
in objects include the Global object, the Object object, the Function object, the Array object, the String object, the
Boolean object, the Number object, the Math object, the Date object, the RegExp object and the Error objects
Error, EvalError, RangeError, ReferenceError, SyntaxError, TypeError and URIError.

ECMAScript also defines a set of built-in operators that may not be, strictly speaking, functions or methods.
ECMAScript operators include various unary operations, multiplicative operators, additive operators, bitwise shift
operators, relational operators, equality operators, binary bitwise operators, binary logical operators, assignment
operators, and the comma operator.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as an
easy-to-use scripting language. For example, a variable is not required to have its type declared nor are types
associated with properties, and defined functions are not required to have their declarations appear textually before
calls to them.

4.2.1 Objects

ECMAScript does not contain proper classes such as those in C++, Smalltalk, or Java, but rather, supports
constructors which create objects by executing code that allocates storage for the objects and initialises all or part
of them by assigning initial values to their properties. All constructors are objects, but not all objects are
constructors. Each constructor has a Prototype property that is used to implement prototype-based inheritance
and shared properties. Objects are created by using constructors in new expressions; for example, new
String ("A String") creates a new String object. Invoking a constructor without using new has consequences
that depend on the constructor. For example, String ("A String") produces a primitive string, not an object.

ECMAScript supports prototype-based inheritance. Every constructor has an associated prototype, and every
object created by that constructor has an implicit reference to the prototype (called the object’s prototype)
associated with its constructor. Furthermore, a prototype may have a non-null implicit reference to its prototype, and
so on; this is called the prototype chain. When a reference is made to a property in an object, that reference is to
the property of that name in the first object in the prototype chain that contains a property of that name. In other
words, first the object mentioned directly is examined for such a property; if that object contains the named
property, that is the property to which the reference refers; if that object does not contain the named property, the
prototype for that object is examined next; and so on.

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by classes,
and inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried by objects,
and structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property and its
value. The following diagram illustrates this:

ECMAScript Language Specification Edition 3 24-Mar-00

A A -
""""" CF implicit prototype link
prototype — Cf i
P1 P e i
P> CFP1 o]
explicit prototype link

A A A
cf1 ------- cfz cf3 cf4 ----- L] cfs
ql ql ql gl ql
a2 q2 g2 g2 q2

CF is a constructor (and also an object). Five objects have been created by using new expressions: cf1, cf2, cf3,
cf4, and cf5. Each of these objects contains properties named q1 and 2. The dashed lines represent the implicit
prototype relationship; so, for example, cf3’'s prototype is CFp. The constructor, CF, has two properties itself,
named P1 and P2, which are not visible to CFp, cf1, cf2, cf3, cf4, or cf5. The property named CFP1 in CFp is
shared by cf1, cf2, cf3, cf4, and cf5 (but not by cf), as are any properties found in CFp’s implicit prototype chain that
are not named q1, g2, or CFP1. Notice that there is no implicit prototype link between CF and CFp.

Unlike class-based object languages, properties can be added to objects dynamically by assigning values to them.
That is, constructors are not required to name or assign values to all or any of the constructed object’s properties. In
the above diagram, one could add a new shared property for cf;, cf,, cf;, cf;, and cf; by assigning a new value to
the property in CF,.

4.3 Definitions

The following are informal definitions of key terms associated with ECMAScript.
4.3.1 Type

A type is a set of data values.

4.3.2 Primitive Value

A primitive value is a member of one of the types Undefined, Null, Boolean, Number, or String. A primitive value
is a datum that is represented directly at the lowest level of the language implementation.

4.3.3 Object

An object is a member of the type Object. It is an unordered collection of properties each of which contains a
primitive value, object, or function. A function stored in a property of an object is called a method.

4.3.4 Constructor

A constructor is a Function object that creates and initialises objects. Each constructor has an associated
prototype object that is used to implement inheritance and shared properties.

4.3.5 Prototype

A prototype is an object used to implement structure, state, and behaviour inheritance in ECMAScript. When a
constructor creates an object, that object implicitly references the constructor’s associated prototype for the purpose
of resolving property references. The constructor’'s associated prototype can be referenced by the program

ECMAScript Language Specification Edition 3 24-Mar-00

expression constructor.prototype, and properties added to an object's prototype are shared, through
inheritance, by all objects sharing the prototype.

4.3.6 Native Object

A native object is any object supplied by an ECMAScript implementation independent of the host environment.
Standard native objects are defined in this specification. Some native objects are built-in; others may be
constructed during the course of execution of an ECMAScript program.

4.3.7 Built-in Object

A built-in object is any object supplied by an ECMAScript implementation, independent of the host environment,
which is present at the start of the execution of an ECMAScript program. Standard built-in objects are defined in this
specification, and an ECMAScript implementation may specify and define others. Every built-in object is a native
object.

4.3.8 Host Object

A host object is any object supplied by the host environment to complete the execution environment of
ECMAScript. Any object that is not native is a host object.

4.3.9 Undefined Value

The undefined value is a primitive value used when a variable has not been assigned a value.
4.3.10 Undefined Type

The type Undefined has exactly one value, called undefined.

4.3.11 Null Value

The null value is a primitive value that represents the null, empty, or non-existent reference.
4.3.12 Null Type

The type Null has exactly one value, called null.

4.3.13 Boolean Value

A boolean value is a member of the type Boolean and is one of two unique values, true and false.
4.3.14 Boolean Type

The type Boolean represents a logical entity and consists of exactly two unique values. One is called true and the
other is called false.

4.3.15 Boolean Object

A Boolean object is a member of the type Object and is an instance of the built-in Boolean object. That is, a
Boolean object is created by using the Boolean constructor in a new expression, supplying a boolean as an
argument. The resulting object has an implicit (unnamed) property that is the boolean. A Boolean object can be
coerced to a boolean value.

4.3.16 String Value

A string value is a member of the type String and is a finite ordered sequence of zero or more 16-bit unsigned
integer values.

NOTE Although each value usually represents a single 16-bit unit of UTF-16 text, the language does not place any restrictions
or requirements on the values except that they be 16-bit unsigned integers.

4.3.17 String Type

The type String is the set of all string values.

6

ECMAScript Language Specification Edition 3 24-Mar-00
4.3.18 String Object

A String object is a member of the type Object and is an instance of the built-in String object. That is, a String
object is created by using the String constructor in a new expression, supplying a string as an argument. The
resulting object has an implicit (unnamed) property that is the string. A String object can be coerced to a string
value by calling the String constructor as a function (section f[5.5.1).

4.3.19 Number Value
A number value is a member of the type Number and is a direct representation of a number.
4.3.20 Number Type

The type Number is a set of values representing numbers. In ECMAScript, the set of values represents the double-
precision 64-bit format IEEE 754 values including the special “Not-a-Number” (NaN) values, positive infinity, and
negative infinity.

4.3.21 Number Object

A Number object is a member of the type Object and is an instance of the built-in Number object. That is, a
Number object is created by using the Number constructor in a new expression, supplying a number as an
argument. The resulting object has an implicit (unnamed) property that is the number. A Number object can be
coerced to a number value by calling the Number constructor as a function (section [{5.7.1).

4.3.22 Infinity

The primitive value Infinity represents the positive infinite number value. This value is a member of the Number
type.

4.3.23 NaN

The primitive value NaN represents the set of IEEE Standard “Not-a-Number” values. This value is a member of the
Number type.

ECMAScript Language Specification Edition 3 24-Mar-00

5 Notational Conventions
5.1 Syntactic and Lexical Grammars

This section describes the context-free grammars used in this specification to define the lexical and syntactic
structure of an ECMAScript program.

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a
nonterminal as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its right-
hand side. For each grammar, the terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given context-
free grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of terminal symbols
that can result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for
which the nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in section [7] This grammar has as its terminal symbols the characters of
the Unicode character set. It defines a set of productions, starting from the goal symbol InputElementDiv or
InputElementRegExp, that describe how sequences of Unicode characters are translated into a sequence of input
elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens, also
become part of the stream of input elements and guide the process of automatic semicolon insertion (section [7.8.5).
Simple white space and single-line comments are discarded and do not appear in the stream of input elements for
the syntactic grammar. A MultiLineComment (that is, a comment of the form “/=*...*/” regardless of whether it
spans more than one line) is likewise simply discarded if it contains no line terminator; but if a MultiLineComment
contains one or more line terminators, then it is replaced by a single line terminator, which becomes part of the
stream of input elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in section This grammar also has as its terminal symbols the
characters of the Unicode character set. It defines a set of productions, starting from the goal symbol Pattern, that
describe how sequences of Unicode characters are translated into regular expression patterns.
Productions of the lexical and RegExp grammars are distinguished by having two colons “::”
punctuation. The lexical and RegExp grammars share some productions.

as separating

5.1.3 The Numeric String Grammar

A second grammar is used for translating strings into numeric values. This grammar is similar to the part of the
lexical grammar having to do with numeric literals and has as its terminal symbols the characters of the Unicode
character set. This grammar appears in section

Productions of the numeric string grammar are distinguished by having three colons “: : :” as punctuation.
5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in sections and This grammar has ECMAScript
tokens defined by the lexical grammar as its terminal symbols (section p.1.2). It defines a set of productions,
starting from the goal symbol Program, that describe how sequences of tokens can form syntactically correct
ECMAScript programs.

When a stream of Unicode characters is to be parsed as an ECMAScript program, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a
single application of the syntax grammar. The program is syntactically in error if the tokens in the stream of input
elements cannot be parsed as a single instance of the goal nonterminal Program, with no tokens left over.

ECMAScript Language Specification Edition 3 24-Mar-00

“

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in sections fi3]and is actually not a complete account of which
token sequences are accepted as correct ECMAScript programs. Certain additional token sequences are also
accepted, namely, those that would be described by the grammar if only semicolons were added to the sequence in
certain places (such as before line terminator characters). Furthermore, certain token sequences that are described
by the grammar are not considered acceptable if a terminator character appears in certain “awkward” places.

5.1.5 Grammar Notation

Terminal symbols of the lexical and string grammars, and some of the terminal symbols of the syntactic grammar,
are shown in fixed width font, both in the productions of the grammars and throughout this specification
whenever the text directly refers to such a terminal symbol. These are to appear in a program exactly as written. All
nonterminal characters specified in this way are to be understood as the appropriate Unicode character from the
ASCII range, as opposed to any similar-looking characters from other Unicode ranges.

Nonterminal symbols are shown in jtalic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined followed by one or more colons. (The number of colons indicates to which grammar the
production belongs.) One or more alternative right-hand sides for the nonterminal then follow on succeeding lines.
For example, the syntactic definition:

WithStatement :
with (Expression) Statement

states that the nonterminal WithStatement represents the token with, followed by a left parenthesis token, followed
by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of Expression
and Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :
AssignmentExpression
ArgumentList , AssignmentExpression

states that an ArgumentList may represent either a single AssignmentExpression or an ArgumentList, followed by a
comma, followed by an AssignmentExpression. This definition of ArgumentList is recursive, that is, it is defined in
terms of itself. The result is that an ArgumentList may contain any positive number of arguments, separated by
commas, where each argument expression is an AssignmentExpression. Such recursive definitions of nonterminals
are common.

The subscripted suffix “opt”’, which may appear after a terminal or nonterminal, indicates an optional symbol. The
alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional
element and one that includes it. This means that:

VariableDeclaration :
Identifier Initialiser,p;

is a convenient abbreviation for:
VariableDeclaration
Identifier
Identifier Initialiser

and that:

IterationStatement :
for (ExpressionNoln,, ; Expression.y, ; Expressiong,) Statement

is a convenient abbreviation for:
IterationStatement :

for (; Expression,, ; Expression.,) Statement
for (ExpressionNoln ; Expression.y ; Expressiong,) Statement

10

ECMAScript Language Specification Edition 3 24-Mar-00
which in turn is an abbreviation for:

IterationStatement :
for (; ; Expression,;) Statement
for (; Expression ; Expression,y) Statement
for (ExpressionNoln ; ; Expression.:) Statement
for (ExpressionNoln ; Expression ; Expression,,) Statement

which in turn is an abbreviation for:

IterationStatement :
for (; ;) Statement

for ; ; Expression) Statement
for ; Expression ;) Statement
for ; Expression ; Expression) Statement

for ExpressionNoln ; ; Expression) Statement
for ExpressionNoln ; Expression ;) Statement

(
(
(
for (ExpressionNoln ; ;) Statement
(
(
for (ExpressionNoln ; Expression ; Expression) Statement

so the nonterminal IlterationStatement actually has eight alternative right-hand sides.

If the phrase “lempty]” appears as the right-hand side of a production, it indicates that the production's right-hand
side contains no terminals or nonterminals.

If the phrase “lookahead ¢ sef]” appears in the right-hand side of a production, it indicates that the production may not
be used if the immediately following input terminal is a member of the given set. The set can be written as a list of
terminals enclosed in curly braces. For convenience, the set can also be written as a nonterminal, in which case it
represents the set of all terminals to which that nonterminal could expand. For example, given the definitions

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

the definition

LookaheadExample ::
n [lookahead ¢ {1, 3, 5, 7, 9}] DecimalDigits
DecimalDigit [lookahead ¢ DecimalDigit |

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit not
followed by another decimal digit.

If the phrase “Ino LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the input
stream at the indicated position. For example, the production:

ReturnStatement :
return [no LineTerminator here] EXpressionqy ;

indicates that the production may not be used if a Line Terminator occurs in the program between the return token
and the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without affecting
the syntactic acceptability of the program.

11

ECMAScript Language Specification Edition 3 24-Mar-00
When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal symbols
on the following line or lines is an alternative definition. For example, the lexical grammar for ECMAScript contains
the production:

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

which is merely a convenient abbreviation for:

NonZeroDigit :: one of
1

W oJoaul b WD

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a multi-
character token, it represents the sequence of characters that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase “but
not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of characters that could replace
IdentifierName provided that the same sequence of characters could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in roman type in cases where it would be
impractical to list all the alternatives:

SourceCharacter ::
any Unicode character

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to clarify
semantics. In practice, there may be more efficient algorithms available to implement a given feature.

When an algorithm is to produce a value as a result, the directive “return x” is used to indicate that the result of the
algorithm is the value of x and that the algorithm should terminate. The notation Result(n) is used as shorthand for
“the result of step n”. Type(x) is used as shorthand for “the type of x".

Mathematical operations such as addition, subtraction, negation, multiplication, division, and the mathematical
functions defined later in this section should always be understood as computing exact mathematical results on
mathematical real numbers, which do not include infinities and do not include a negative zero that is distinguished
from positive zero. Algorithms in this standard that model floating-point arithmetic include explicit steps, where
necessary, to handle infinities and signed zero and to perform rounding. If a mathematical operation or function is
applied to a floating-point number, it should be understood as being applied to the exact mathematical value
represented by that floating-point number; such a floating-point number must be finite, and if it is +0 or -0 then the
corresponding mathematical value is simply 0.

The mathematical function abs(x) yields the absolute value of x, which is —x if x is negative (less than zero) and
otherwise is x itself.

The mathematical function sign(x) yields 1 if x is positive and —1 if x is negative. The sign function is not used in this
standard for cases when x is zero.

12

ECMAScript Language Specification Edition 3 24-Mar-00

The notation “x modulo y” (y must be finite and nonzero) computes a value k of the same sign as y (or zero) such
that abs(k) < abs(y) and x—k = q x y for some integer q.

The mathematical function floor(x) yields the largest integer (closest to positive infinity) that is not larger than x.
NOTE floor(x) = x—(x modulo 1).

If an algorithm is defined to “throw an exception”, execution of the algorithm is terminated and no result is returned.
The calling algorithms are also terminated, until an algorithm step is reached that explicitly deals with the exception,

using terminology such as “If an exception was thrown...”. Once such an algorithm step has been encountered the
exception is no longer considered to have occurred.

13

ECMAScript Language Specification Edition 3 24-Mar-00

6 Source Text

ECMAScript source text is represented as a sequence of characters in the Unicode character encoding, version 2.1
or later, using the UTF-16 transformation format. The text is expected to have been normalised to Unicode
Normalised Form C (canonical composition), as described in Unicode Technical Report #15. Conforming
ECMAScript implementations are not required to perform any normalisation of text, or behave as though they were
performing normalisation of text, themselves.

SourceCharacter ::
any Unicode character

ECMAScript source text can contain any of the Unicode characters. All Unicode white space characters are treated
as white space, and all Unicode line/paragraph separators are treated as line separators. Non-Latin Unicode
characters are allowed in identifiers, string literals, regular expression literals and comments.

Throughout the rest of this document, the phrase “code point” and the word “character” will be used to refer to a 16-
bit unsigned value used to represent a single 16-bit unit of UTF-16 text. The phrase “Unicode character” will be
used to refer to the abstract linguistic or typographical unit represented by a single Unicode scalar value (which may
be longer than 16 bits and thus may be represented by more than one code point). This only refers to entities
represented by single Unicode scalar values: the components of a combining character sequence are still individual
“Unicode characters,” even though a user might think of the whole sequence as a single character.

In string literals, regular expression literals and identifiers, any character (code point) may also be expressed as a
Unicode escape sequence consisting of six characters, namely \u plus four hexadecimal digits. Within a comment,
such an escape sequence is effectively ignored as part of the comment. Within a string literal or regular expression
literal, the Unicode escape sequence contributes one character to the value of the literal. Within an identifier, the
escape sequence contributes one character to the identifier.

NOTE Although this document sometimes refers to a “transformation” between a “character” within a “string” and the 16-bit
unsigned integer that is the UTF-16 encoding of that character, there is actually no transformation because a “character” within a
“string” is actually represented using that 16-bit unsigned value.

NOTE ECMAScript differs from the Java programming language in the behaviour of Unicode escape sequences. In a Java
program, if the Unicode escape sequence \u000Aa, for example, occurs within a single-line comment, it is interpreted as a line
terminator (Unicode character 000A is line feed) and therefore the next character is not part of the comment. Similarly, if the
Unicode escape sequence \u000A occurs within a string literal in a Java program, it is likewise interpreted as a line terminator,
which is not allowed within a string literal—one must write \n instead of \u000A to cause a line feed to be part of the string
value of a string literal. In an ECMAScript program, a Unicode escape sequence occurring within a comment is never interpreted
and therefore cannot contribute to termination of the comment. Similarly, a Unicode escape sequence occurring within a string
literal in an ECMAScript program always contributes a character to the string value of the literal and is never interpreted as a line
terminator or as a quote mark that might terminate the string literal.

15

ECMAScript Language Specification Edition 3 24-Mar-00

7 Lexical Conventions

The source text of an ECMAScript program is first converted into a sequence of input elements, which are either
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking
the longest possible sequence of characters as the next input element.

There are two goal symbols for the lexical grammar. The InputElementDiv symbol is used in those syntactic
grammar contexts where a division (/) or division-assignment (/=) operator is permitted. The InputElementRegExp
symbol is used in other syntactic grammar contexts.

Note that contexts exist in the syntactic grammar where both a division and a RegularExpressionLiteral are
permitted by the syntactic grammar; however, since the lexical grammar uses the InputElementDiv goal symbol in
such cases, the opening slash is not recognised as starting a regular expression literal in such a context. As a
workaround, one may enclose the regular expression literal in parentheses.

Syntax

InputElementDiv ::
WhiteSpace
LineTerminator
Comment
Token
DivPunctuator

InputElementRegEXxp ::
WhiteSpace
LineTerminator
Comment
Token
RegularExpressionLiteral

7.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf’ in the Unicode Character Database
such as LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the formatting of a range of
text in the absence of higher-level protocols for this (such as mark-up languages). It is useful to allow these in
source text to facilitate editing and display.

The format control characters can occur anywhere in the source text of an ECMAScript program. These characters
are removed from the source text before applying the lexical grammar. Since these characters are removed before
processing string and regular expression literals, one must use a. Unicode escape sequence (see section to
include a Unicode format-control character inside a string or regular expression literal.

7.2 White Space

White space characters are used to improve source text readability and to separate tokens (indivisible lexical units)
from each other, but are otherwise insignificant. White space may occur between any two tokens, and may occur
within strings (where they are considered significant characters forming part of the literal string value), but cannot
appear within any other kind of token.

The following characters are considered to be white space:

Code Point Value Name Formal Name

\u0009 Tab <TAB>

\u000B Vertical Tab <VT>

\uo0o0o0cC Form Feed <FF>

\u0020 Space <SP>

\u00A0 No-break space <NBSP>

Other category “Zs” Any other Unicode <USP>
“space separator”

17

ECMAScript Language Specification Edition 3 24-Mar-00

Syntax

WhiteSpace ::
<TAB>
<VT>
<FF>
<SP>
<NBSP>
<USP>

7.3 Line Terminators

Like white space characters, line terminator characters are used to improve source text readability and to separate
tokens (indivisible lexical units) from each other. However, unlike white space characters, line terminators have
some influence over the behaviour of the syntactic grammar. In general, line terminators may occur between any
two tokens, but there are a few places where they are forbidden by the syntactic grammar. A line terminator cannot
occur within any token, not even a string. Line terminators also affect the process of automatic semicolon insertion

(section [.8.5).

The following characters are considered to be line terminators:

Code Point Value Name Formal Name
\u000A Line Feed <LF>
\u000D Carriage Return <CR>
\u2028 Line separator <LS>
\u2029 Paragraph separator <PS>
Syntax
LineTerminator ::
<LF>
<CR>
<S>
<PS>

7.4 Comments
Description
Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any character except a Line Terminator character, and because of the
general rule that a token is always as long as possible, a single-line comment always consists of all characters from
the // marker to the end of the line. However, the Line Terminator at the end of the line is not considered to be part
of the single-line comment; it is recognised separately by the lexical grammar and becomes part of the stream of
input elements for the syntactic grammar. This point is very important, because it implies that the presence or
absence of single-line comments does not affect the process of automatic semicolon insertion (section .

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line terminator
character, then the entire comment is considered to be a LineTerminator for purposes of parsing by the syntactic
grammar.

Syntax

Comment ::
MultiLineComment
SingleLineComment

MultiLineComment ::
/* MultiLineCommentCharSgp * /

18

ECMAScript Language Specification Edition 3 24-Mar-00

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLine CommentCharsp;
* PostAsteriskCommentChars

PostAsteriskCommentChars ::
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars
* PostAsteriskCommentChars

MultiLineNotAsteriskChar ::
SourceCharacter but not asterisk *

MuiltiLineNotForwardSlashOrAsteriskChar ::
SourceCharacter but not forward-slash / or asterisk *

SingleLineComment ::
// SingleLineCommentCharsp

SingleLineCommentChars ::
SingleLineCommentChar SingleLineCommentChars

SingleLineCommentChar ::
SourceCharacter but not Line Terminator

7.5 Tokens

Syntax

Token ::
ReservedWord
Identifier
Punctuator
NumericLiteral
StringLiteral

7.5.1 Reserved Words
Description
Reserved words cannot be used as identifiers.

Syntax

ReservedWord ::
Keyword
FutureReservedWord
NullLiteral
BooleanlLiteral

7.5.2 Keywords

The following tokens are ECMAScript keywords and may not be used as identifiers in ECMAScript programs.

Syntax

Keyword :: one of
break else new
case finally return
catch for switch
continue function this
default if throw
delete in try
do instanceof typeof

var
void
while
with

19

ECMAScript Language Specification Edition 3 24-Mar-00

7.5.3 Future Reserved Words

The following words are used as keywords in proposed extensions and are therefore reserved to allow for the
possibility of future adoption of those extensions.

Syntax

FutureReservedWord :: one of
abstract enum int short
boolean export interface static
byte extends long super
char final native synchronized
class float package throws
const goto private transient
debugger implements protected volatile
double import public

7.6 Identifiers
Description

Identifiers are interpreted according to the grammar given in Section 5.16 of the upcoming version 3.0 of the
Unicode standard, with some small modifications. This grammar is based on both normative and informative
character categories specified by the Unicode standard. The characters in the specified categories in version 2.1 of
the Unicode standard must be treated as in those categories by all conforming ECMAScript implementations;
however, conforming ECMAScript implementations may allow additional legal identifier characters based on the
category assignment from later versions of Unicode.

This standard specifies one departure from the grammar given in the Unicode standard: The dollar sign ($) and the
underscore (_) are permitted anywhere in an identifier. The dollar sign is intended for use only in mechanically
generated code.

Unicode escape sequences are also permitted in identifiers, where they contribute a single character to the
identifier, as computed by the CV of the UnicodeEscapeSequence (see section . The \ preceding the
UnicodeEscapeSequence does not contribute a character to the identifier. A UnicodeEscapeSequence cannot be
used to put a character into an identifier that would otherwise be illegal. In other words, if a \
UnicodeEscapeSequence sequence were replaced by its UnicodeEscapeSequence's CV, the result must still be a
valid /dentifier that has the exact same sequence of characters as the original Identifier.

Two identifiers that are canonically equivalent according to the Unicode standard are not equal unless they are
represented by the exact same sequence of code points (in other words, conforming ECMAScript implementations
are only required to do bitwise comparison on identifiers). The intent is that the incoming source text has been
converted to normalised form C before it reaches the compiler.

Syntax
Identifier ::
IdentifierName but not ReservedWord

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
Unicodel etter
$

(UnicodeEscapeSequence

20

ECMAScript Language Specification Edition 3 24-Mar-00

IdentifierPart ::
IdentifierStart
UnicodeCombiningMark
UnicodeDigit
UnicodeConnectorPunctuation
\ UnicodeEscapeSequence

Unicodel etter

any character in the Unicode categories “Uppercase letter (Lu)”, “Lowercase letter (LI)”, “Titlecase letter (Lt)”,
“Modifier letter (Lm)”, “Other letter (Lo)", or “Letter number (NI)”.

UnicodeCombiningMark

any character in the Unicode categories “Non-spacing mark (Mn)” or “Combining spacing mark (Mc)”

UnicodeDigit

any character in the Unicode category “Decimal number (Nd)”

UnicodeConnectorPunctuation

any character in the Unicode category “Connector punctuation (Pc)”

UnicodeEscapeSequence
see section [7.8.4]

HexDigit :: one of
0 1 2 3 4 5 6 7 8 9 a b

7.7 Punctuators

Syntax

Punctuator :: one of
{ } ()

7 7 <

>= == I= ===
+ - * %
<< >> >>> &
' - &s I
= += -= *=
>>= >>>= &= | =

DivPunctuator :: one of
/ /=

7.8 Literals

Syntax

Literal ::
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

7.8.1 Null Literals

Syntax

NullLiteral ::
null

Semantics

e £f A B C D E F

++ --

(V]

o®
1]

<<=

21

ECMAScript Language Specification Edition 3 24-Mar-00

The value of the null literal null is the sole value of the Null type, namely null.
7.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true
false

Semantics

The value of the Boolean literal true is a value of the Boolean type, namely true.
The value of the Boolean literal £alse is a value of the Boolean type, namely false.
7.8.3 Numeric Literals

Syntax

NumericLiteral ::
DecimallLiteral
HexIntegerlLiteral

DecimallLiteral ::
DecimallntegerLiteral . DecimalDigitsy,: ExponentPart,p
. DecimalDigits ExponentPart,p;
DecimallntegerLiteral ExponentPart,;

DecimalintegerLiteral ::
0

NonZeroDigit DecimalDigits

DecimalDigits ::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit :: one of
0 1 2 3 4 5 6 7 8 9

NonZeroDigit :: one of
1 2 3 4 5 6 7 8 9

ExponentPart ::
Exponentindicator Signedinteger

Exponentindicator :: one of
e E

Signedinteger ::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral ::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

The source character immediately following a NumericLiteral must not be an IdentifierStart or DecimalDigit.

NOTE For example:

22

ECMAScript Language Specification

3in

is an error and not the two input elements 3 and in.

Semantics

Edition 3 24-Mar-00

A numeric literal stands for a value of the Number type. This value is determined in two steps: first, a mathematical
value (MV) is derived from the literal; second, this mathematical value is rounded as described below.

The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

The MV of NumericLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral . is the MV of DecimalintegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits is the MV of DecimallntegerLiteral plus (the
MV of DecimalDigits times 10™"), where n is the number of characters in DecimalDigits.

The MV of DecimalLiteral :: DecimallntegerLiteral . ExponentPart is the MV of DecimalintegerLiteral times 10°,
where e is the MV of ExponentPart.

The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits ExponentPart is (the MV of
DecimalintegerLiteral plus (the MV of DecimalDigits times 10™")) times 10°, where n is the number of characters
in DecimalDigits and e is the MV of ExponentPart.

The MV of DecimallLiteral ::. DecimalDigits is the MV of DecimalDigits times 10™", where n is the number of
characters in DecimalDigits.
The MV of DecimalLiteral :: . DecimalDigits ExponentPart is the MV of DecimalDigits times 10°™", where n is the
number of characters in DecimalDigits and e is the MV of ExponentPart.

The MV of DecimalLiteral :: DecimallntegerLiteral is the MV of DecimallntegerLiteral.

The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPart is the MV of DecimallntegerLiteral times 10°,
where e is the MV of ExponentPart.

The MV of DecimalintegerLiteral :: 0 is Q.

The MV of DecimallntegerLiteral :: NonZeroDigit DecimalDigits is (the MV of NonZeroDigit times 10") plus the
MV of DecimalDigits, where n is the number of characters in DecimalDigits.

The MV of DecimalDigits

The MV of DecimalDigits
DecimalDigit.

The MV of ExponentPart ::
The MV of Signedinteger ::
The MV of Signedinteger ::

The MV of Signedinteger

The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::
The MV of DecimalDigit ::

DecimalDigit is the MV of DecimalDigit.
DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of

Exponentindicator Signedinteger is the MV of Signedinteger.
DecimalDigits is the MV of DecimalDigits.
+ DecimalDigits is the MV of DecimalDigits.

:: - DecimalDigits is the negative of the MV of DecimalDigits.
0 or of HexDigit :: 0 is 0.

1 or of NonZeroDigit ::
2 or of NonZeroDigit ::
3 or of NonZeroDigit ::
4 or of NonZeroDigit ::
5 or of NonZeroDigit ::
6 or of NonZeroDigit ::
7 or of NonZeroDigit ::
8 or of NonZeroDigit ::
9 or of NonZeroDigit ::

The MV of HexDigit ::
The MV of HexDigit :
The MV of HexDigit ::
The MV of HexDigit :
The MV of HexDigit ::
The MV of HexDigit ::

a or of HexDigit :: Ais 10.
: b or of HexDigit :: B is 11.
c or of HexDigit :: Cis 12.
: d or of HexDigit :: D is 13.
e or of HexDigit :: E is 14.
£ or of HexDigit :: F is 15.

1 or of HexDigit
2 or of HexDigit
3 or of HexDigit
4 or of HexDigit
5 or of HexDigit
6 or of HexDigit
7 or of HexDigit
8 or of HexDigit
9 or of HexDigit

The MV of HexlntegerLiteral :: 0x HexDigit is the MV of HexDigit.
The MV of HexlntegerLiteral :: 0X HexDigit is the MV of HexDigit.

mlis.
m2is 2.
1 3is 3.
n4is4.
1 5is 5.
11 6is6.
n7is 7.
;1 8is 8.
1 9is 9.

23

ECMAScript Language Specification Edition 3 24-Mar-00

e The MV of HexIntegerLiteral :: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the MV
of HexDigit.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type. If
the MV is 0, then the rounded value is +0; otherwise, the rounded value must be the number value for the MV (in
the sense defined in section , unless the literal is a DecimallLiteral and the literal has more than 20 significant
digits, in which case the number value may be either the number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit or the number value for the MV of a literal produced by replacing
each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th significant digit
position. A digit is significant if it is not part of an ExponentPart and

e itisnot 0; or
o there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

7.8.4 String Literals

A string literal is zero or more characters enclosed in single or double quotes. Each character may be represented
by an escape sequence.

Syntax

StringLiteral ::
" DoubleStringCharactersyp; "
v SingleStringCharacters,p; '

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharacters

SingleStringCharacters ::
SingleStringCharacter SingleStringCharactersp;

DoubleStringCharacter ::
SourceCharacter but not double-quote ™ or backslash \ or LineTerminator
\ EscapeSequence

SingleStringCharacter ::
SourceCharacter but not single-quote ' or backslash \ or Line Terminator
\ EscapeSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead ¢ DecimalDigit]
HexEscapeSequence
UnicodeEscapeSequence

CharacterEscapeSequence ::
SingleEscapeCharacter
NonEscapeCharacter

SingleEscapeCharacter :: one of
v » \ b £f n r t wv

NonEscapeCharacter ::
SourceCharacter but not EscapeCharacter or LineTerminator

EscapeCharacter ::
SingleEscapeCharacter
DecimalDigit
X
u

HexEscapeSequence ::
x HexDigit HexDigit

24

ECMAScript Language Specification Edition 3 24-Mar-00

UnicodeEscapeSequence ::
u HexDigit HexDigit HexDigit HexDigit

The definitions of the nonterminal HexDigit is given in section SourceCharacter is described in sections P|and

Fl

A string literal stands for a value of the String type. The string value (SV) of the literal is described in terms of
character values (CV) contributed by the various parts of the string literal. As part of this process, some characters
within the string literal are interpreted as having a mathematical value (MV), as described below or in section m

e The SV of StringLiteral :: "» is the empty character sequence.

e The SV of StringLiteral :: ' ' is the empty character sequence.

e The SV of StringLiteral :: " DoubleStringCharacters " is the SV of DoubleStringCharacters.

e The SV of StringLiteral :: * SingleStringCharacters ' is the SV of SingleStringCharacters.

e The SV of DoubleStringCharacters :: DoubleStringCharacter is a sequence of one character, the CV of
DoubleStringCharacter.

e The SV of DoubleStringCharacters :: DoubleStringCharacter DoubleStringCharacters is a sequence of the CV of
DoubleStringCharacter followed by all the characters in the SV of DoubleStringCharacters in order.

e The SV of SingleStringCharacters :: SingleStringCharacter is a sequence of one character, the CV of
SingleStringCharacter.

e The SV of SingleStringCharacters :: SingleStringCharacter SingleStringCharacters is a sequence of the CV of
SingleStringCharacter followed by all the characters in the SV of SingleStringCharacters in order.

e The CV of DoubleStringCharacter :: SourceCharacter but not double-quote " or backslash \ or LineTerminator
is the SourceCharacter character itself.

e The CV of DoubleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

e The CV of SingleStringCharacter :: SourceCharacter but not single-quote ' or backslash \ or LineTerminator is
the SourceCharacter character itself.

e The CV of SingleStringCharacter :: \ EscapeSequence is the CV of the EscapeSequence.

o The CV of EscapeSequence :: CharacterEscapeSequence is the CV of the CharacterEscapeSequence.

e The CV of EscapeSequence :: 0 [lookahead ¢ DecimalDigitlis @ <NUL> character (Unicode value 0000).

e The CV of EscapeSequence :: HexEscapeSequence is the CV of the HexEscapeSequence.

e The CV of EscapeSequence :: UnicodeEscapeSequence is the CV of the UnicodeEscapeSequence.

e The CV of CharacterEscapeSequence :: SingleEscapeCharacter is the character whose code point value is
determined by the SingleEscapeCharacter according to the following table:

Escape Sequence Code Point Value Name Symbol

\b \u0008 backspace <BS>
\t \u0009 horizontal tab <HT>
\n \u000A line feed (new line) <LF>
\v \u000B vertical tab <VT>
\f \u000C form feed <FF>
\r \u000D carriage return <CR>
\" \u0022 double quote "

\! \u0027 single quote !

\\ \u005C backslash \

e The CV of CharacterEscapeSequence :: NonEscapeCharacter is the CV of the NonEscapeCharacter.

e The CV of NonEscapeCharacter :: SourceCharacter but not EscapeCharacter or Line Terminator is the
SourceCharacter character itself.

e The CV of HexEscapeSequence :: x HexDigit HexDigit is the character whose code point value is (16 times the
MV of the first HexDigit) plus the MV of the second HexDigit.

e The CV of UnicodeEscapeSequence :: u HexDigit HexDigit HexDigit HexDigit is the character whose code point
value is (4096 (that is, 163) times the MV of the first HexDigit) plus (256 (that is, 162) times the MV of the second
HexDigit) plus (16 times the MV of the third HexDigit) plus the MV of the fourth HexDigit.

NOTE A LineTerminator character cannot appear in a string literal, even if preceded by a backslash \. The correct way to cause
a line terminator character to be part of the string value of a string literal is to use an escape sequence such as \n or \u000A.

25

ECMAScript Language Specification Edition 3 24-Mar-00
7.8.5 Regular Expression Literals

A regular expression literal is an input element that is converted to a RegExp object (section [15.10) when it is
scanned. The object is created before evaluation of the containing program or function begins. Evaluation of the
literal produces a reference to that object; it does not create a new object. Two regular expression literals in a
program evaluate to regular expression objects that never compare as === to each other even if the two literals'
contents are identical. A RegExp object may also be created at runtime by new RegExp (section or calling
the RegExp constructor as a function (section .

The productions below describe the syntax for a regular expression literal and are used by the input element
scanner to find the end of the regular expression literal. The strings of characters comprising the
RegularExpressionBody and the RegularExpressionFlags are passed uninterpreted to the regular expression
constructor, which interprets them according to its own, more stringent grammar. An implementation may extend
the regular expression constructor's grammar, but it should not extend the RegularExpressionBody and
RegularExpressionFlags productions or the productions used by these productions.

Syntax

RegularExpressionLiteral ::
/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody ::
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
NonTerminator but not * or \ or /
BackslashSequence

RegularExpressionChar ::
NonTerminator but not \ or /
BackslashSequence

BackslashSequence ::
\ NonTerminator

NonTerminator ::
SourceCharacter but not LineTerminator

RegularExpressionFlags ::
[empty]
RegularExpressionFlags IdentifierPart

NOTE Regular expression literals may not be empty; instead of representing an empty regular expression literal, the characters
// start a single-line comment. To specify an empty regular expression, use / (?:) /.

Semantics

A regular expression literal stands for a value of the Object type. This value is determined in two steps: first, the
characters comprising the regular expression's RegularExpressionBody and RegularExpressionflags production
expansions are collected uninterpreted into two strings Pattern and Flags, respectively. Then the new RegExp
constructor is called with two arguments Pattern and Flags and the result becomes the value of the
RegularExpressionLiteral. If the call to new RegExp generates an error, an implementation may, at its discretion,
either report the error immediately while scanning the program, or it may defer the error until the regular expression
literal is evaluated in the course of program execution.

7.9 Automatic Semicolon Insertion

Certain ECMAScript statements (empty statement, variable statement, expression statement, do-while statement,
continue statement, break statement, return statement, and throw statement) must be terminated with

26

ECMAScript Language Specification Edition 3 24-Mar-00

semicolons. Such semicolons may always appear explicitly in the source text. For convenience, however, such
semicolons may be omitted from the source text in certain situations. These situations are described by saying that
semicolons are automatically inserted into the source code token stream in those situations.

7.9.1 Rules of Automatic Semicolon Insertion

o When, as the program is parsed from left to right, a token (called the offending token) is encountered that is not
allowed by any production of the grammar, then a semicolon is automatically inserted before the offending token
if one or more of the following conditions is true:

1. The offending token is separated from the previous token by at least one Line Terminator.
2. The offending token is }.

o When, as the program is parsed from left to right, the end of the input stream of tokens is encountered and the
parser is unable to parse the input token stream as a single complete ECMAScript Program, then a semicolon is
automatically inserted at the end of the input stream.

e When, as the program is parsed from left to right, a token is encountered that is allowed by some production of
the grammar, but the production is a restricted production and the token would be the first token for a terminal or
nonterminal immediately following the annotation “[no LineTerminator here]” within the restricted production (and
therefore such a token is called a restricted token), and the restricted token is separated from the previous token
by at least one LineTerminator, then a semicolon is automatically inserted before the restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become one
of the two semicolons in the header of a for statement (section [12.6.3).

NOTE These are the only restricted productions in the grammar:
PostfixExpression :
LeftHandSideExpression [no LineTerminator here] ++

LeftHandSideExpression [no LineTerminator here] - -

Continue Statement :
continue [no LineTerminator here] Identifieroy ;

BreakStatement :
break [no LineTerminator here] Identifieropt ;

ReturnStatement :
return [no LineTerminator here] Expressionopt ;

ThrowStatement :
throw [no LineTerminator here] Expression ;

The practical effect of these restricted productions is as follows:
e When a ++ or - - token is encountered where the parser would treat it as a postfix operator, and at least one Line Terminator

occurred between the preceding token and the ++ or - - token, then a semicolon is automatically inserted before the ++ or - -
token.

e When a continue, break, return, or throw token is encountered and a LineTerminator is encountered before the next
token, a semicolon is automatically inserted after the continue, break, return, or throw token.

The resulting practical advice to ECMAScript programmers is:

o A postfix ++ or - - operator should appear on the same line as its operand.
e An Expression in a return or throw statement should start on the same line as the return or throw token.
e Alabel in a break or continue statement should be on the same line as the break or continue token.

7.9.2 Examples of Automatic Semicolon Insertion
The source

{121}3

27

ECMAScript Language Specification Edition 3 24-Mar-00

is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In contrast,
the source

{

1
2} 3
is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the following:

{1

;2 ;) 3;
which is a valid ECMAScript sentence.
The source

for (a; b

)

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the semicolon is
needed for the header of a for statement. Automatic semicolon insertion never inserts one of the two semicolons
in the header of a for statement.

The source

return
a+b

is transformed by automatic semicolon insertion into the following:

return;
a + b;

NOTE The expression a + b is not treated as a value to be returned by the return statement, because a LineTerminator
separates it from the token return.

The source

is transformed by automatic semicolon insertion into the following:

a = b;
++C;

NOTE The token ++ is not treated as a postfix operator applying to the variable b, because a Line Terminator occurs between b
and ++.

The source

if (a > b)
else c = d

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the else token,
even though no production of the grammar applies at that point, because an automatically inserted semicolon
would then be parsed as an empty statement.

The source

a=>b + c
(d + e) .print ()

28

ECMAScript Language Specification Edition 3 24-Mar-00

is not transformed by automatic semicolon insertion, because the parenthesised expression that begins the second
line can be interpreted as an argument list for a function call:

a=>b + c(d + e).print()

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the
programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on automatic
semicolon insertion.

29

ECMAScript Language Specification Edition 3 24-Mar-00

8 Types

A value is an entity that takes on one of nine types. There are nine types (Undefined, Null, Boolean, String,
Number, Object, Reference, List, and Completion). Values of type Reference, List, and Completion are used only
as intermediate results of expression evaluation and cannot be stored as properties of objects.

8.1 The Undefined Type

The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value has
the value undefined.

8.2 The Null Type
The Null type has exactly one value, called null.
8.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.
8.4 The String Type

The String type is the set of all finite ordered sequences of zero or more 16-bit unsigned integer values
(“elements”). The String type is generally used to represent textual data in a running ECMAScript program, in which
case each element in the string is treated as a code point value (see section B). Each element is regarded as
occupying a position within the sequence. These positions are indexed with nonnegative integers. The first element
(if any) is at position 0, the next element (if any) at position 1, and so on. The length of a string is the number of
elements (i.e., 16-bit values) within it. The empty string has length zero and therefore contains no elements.

When a string contains actual textual data, each element is considered to be a single UTF-16 unit. Whether or not
this is the actual storage format of a String, the characters within a String are numbered as though they were
represented using UTF-16. All operations on Strings (except as otherwise stated) treat them as sequences of
undifferentiated 16-bit unsigned integers; they do not ensure the resulting string is in normalised form, nor do they
ensure language-sensitive results.

NOTE The rationale behind these decisions was to keep the implementation of Strings as simple and high-performing as
possible. The intent is that textual data coming into the execution environment from outside (e.g., user input, text read from a file
or received over the network, etc.) be converted to Unicode Normalised Form C before the running program sees it. Usually this
would occur at the same time incoming text is converted from its original character encoding to Unicode (and would impose no
additional overhead). Since it is recommended that ECMAScript source code be in Normalised Form C, string literals are
guaranteed to be normalised (if source text is guaranteed to be normalised), as long as they do not contain any Unicode escape
sequences.

8.5 The Number Type

The Number type has exactly 18437736874454810627 (that is, 2°*-2°°+3) values, representing the double-
precision 64-bit format IEEE 754 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 9007199254740990 (that is, 253—2) distinct “Not-a-Number” values of the IEEE Standard are
represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the program
expression NaN, assuming that the globally defined variable NaN has not been altered by program execution.) In
some implementations, external code might be able to detect a difference between various Non-a-Number values,
but such behaviour is implementation-dependent; to ECMAScript code, all NaN values are indistinguishable from
each other.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values are also
referred to for expository purposes by the symbols +e and —es, respectively. (Note that these two infinite number
values are produced by the program expressions +Infinity (or simply Infinity) and -Infinity, assuming
that the globally defined variable Infinity has not been altered by program execution.)

The other 18437736874454810624 (that is, 2°“~2°%) values are called the finite numbers. Half of these are positive

numbers and half are negative numbers; for every finite positive number there is a corresponding negative number
having the same magnitude.

31

ECMAScript Language Specification Edition 3 24-Mar-00

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for
expository purposes by the symbols +0 and -0, respectively. (Note that these two zero number values are
produced by the program expressions +0 (or simply 0) and -0.)

The 18437736874454810622 (that is, 2°*—2°°~2) finite nonzero values are of two kinds:
18428729675200069632 (that is, 264—254) of them are normalised, having the form
sxmx2°

where s is +1 or —1, m is a positive integer less than 2°° but not less than 2%, and e is an integer ranging from
—1074 to 971, inclusive.

The remaining 9007199254740990 (that is, 253—2) values are denormalised, having the form
sxmx2°
where s is +1 or —1, m is a positive integer less than 2°2 and e is —1074.

Note that all the positive and negative integers whose magnitude is no greater than 2% are representable in the
Number type (indeed, the integer 0 has two representations, +0 and -0).

A finite number has an odd significand if it is nonzero and the integer m used to express it (in one of the two forms
shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the number value for x” where x represents an exact nonzero real mathematical
quantity (which might even be an irrational number such as ®) means a number value chosen in the following
manner. Consider the set of all finite values of the Number type, with —0 removed and with two additional values
added to it that are not representable in the Number type, namely 2'% (which is +1 x 2% x 2°") and —2'%%* (which is
—1 x 2°° x 2°™"). Choose the member of this set that is closest in value to x. If two values of the set are equally
close, then the one with an even significand is chosen; for this purpose, the two extra values 2'%%* and —2'%** are
considered to have even significands. Finally, if 2'%* was chosen, replace it with +eo; if —2'9* was chosen, replace it
with —oo; if +#0 was chosen, replace it with -0 if and only if x is less than zero; any other chosen value is used
unchanged. The result is the number value for x. (This procedure corresponds exactly to the behaviour of the IEEE
754 “round to nearest” mode.)

Some ECMAScript operators deal only with integers in the range —2*' through 2%'-1, inclusive, or in the range 0
through 2°2_1, inclusive. These operators accept any value of the Number type but first convert each such value to
one of 2% integer values. See the descriptions of the Tolnt32 and ToUint32 operators in sections P.5]and
respectively.

8.6 The Object Type

An Object is an unordered collection of properties. Each property consists of a name, a value and a set of
attributes.

8.6.1 Property Attributes

A property can have zero or more attributes from the following set:

Attribute Description

ReadOnly The property is a read-only property. Attempts by ECMAScript code to
write to the property will be ignored. (Note, however, that in some cases
the value of a property with the ReadOnly attribute may change over time
because of actions taken by the host environment; therefore “ReadOnly”
does not mean “constant and unchanging”!)

DontEnum The property is not to be enumerated by a for-in enumeration (section
[12.6.4).
DontDelete Attempts to delete the property will be ignored. See the description of the

delete operator in section f{1.4.1]

32

ECMAScript Language Specification Edition 3 24-Mar-00

Internal Internal properties have no name and are not directly accessible via the
property accessor operators. How these properties are accessed is
implementation specific. How and when some of these properties are

used is specified by the language specification.

8.6.2 Internal Properties and Methods

Internal properties and methods are not part of the language. They are defined by this specification purely for
expository purposes. An implementation of ECMAScript must behave as if it produced and operated upon internal
properties in the manner described here. For the purposes of this document, the names of internal properties are
enclosed in double square brackets [[]]. When an algorithm uses an internal property of an object and the object
does not implement the indicated internal property, a TypeError exception is thrown.

There are two types of access for normal (non-internal) properties: get and put, corresponding to retrieval and
assignment, respectively.

Native ECMAScript objects have an internal property called [[Prototype]]. The value of this property is either null
or an object and is used for implementing inheritance. Properties of the [[Prototype]] object are visible as properties
of the child object for the purposes of get access, but not for put access.

The following table summarises the internal properties used by this specification. The description indicates their
behaviour for native ECMAScript objects. Host objects may implement these internal methods with any
implementation-dependent behaviour, or it may be that a host object implements only some internal methods and

not others.

Property Parameters Description

[[Prototype]] none The prototype of this object.

[[Class]] none A string value indicating the kind of this object.

[[Valuel]] none Internal state information associated with this
object.

[[Get]] (PropertyName) Returns the value of the property.

[[Put]] (PropertyName, Value) Sets the specified property to Value.

[[CanPut]] (PropertyName) Returns a boolean value indicating whether a
[[Put]] operation with PropertyName will succeed.

[[HasProperty]] | (PropertyName) Returns a boolean value indicating whether the
object already has a member with the given
name.

[[Delete]] (PropertyName) Removes the specified property from the object.

[[DefaultValue]] | (Hint) Returns a default value for the object, which
should be a primitive value (not an object or
reference).

[[Construct]] a list of argument values Constructs an object. Invoked via the new

provided by the caller operator. Objects that implement this internal

method are called constructors.

[[Call]] a list of argument values Executes code associated with the object.

provided by the caller Invoked via a function call expression. Objects

that implement this internal method are called
functions.

[[HasInstance]] | (Value) Returns a boolean value indicating whether Value
delegates behaviour to this object. Of the native
ECMAScript objects, only Function objects
implement [[HasInstance]].

[[Scopel] none A scope chain that defines the environment in
which a Function object is executed.

[[Match]] (String, Index) Tests for a regular expression match and returns
a MatchResult value (see section f5.10.2.1).

Every object (including host objects) must implement the [[Prototype]] and [[Class]] properties and the [[Get]],

[[Put]], [[CanPut]],

[[HasProperty]],

[[Delete]],

and

[[DefaultValue]] methods. (Note, however,

[[DefaultValue]] method may, for some objects, simply throw a TypeError exception.)

that the

33

ECMAScript Language Specification Edition 3 24-Mar-00

The value of the [[Prototype]] property must be either an object or null, and every [[Prototype]] chain must have
finite length (that is, starting from any object, recursively accessing the [[Prototype]] property must eventually lead to
a null value). Whether or not a native object can have a host object as its [[Prototype]] depends on the
implementation.

The value of the [[Class]] property is defined by this specification for every kind of built-in object. The value of the
[[Class]] property of a host object may be any value, even a value used by a built-in object for its [[Class]] property.
The value of a [[Class]] property is used internally to distinguish different kinds of built-in objects. Note that this
specification does not provide any means for a program to access that value except through
Object.prototype.toString (see section .

For native objects the [[Get]], [[Put]], [[CanPut]], [[HasProperty]], [[Delete]] and [[DefaultValue]] methods behave as
described in described in sections B.6.2.1] B.6.2.2] B.6.2.3] B.6.2.4] B.6.2.5]and B.6.2.6] respectively, except that
Array objects have a slightly different implementation of the [[Put]] method (section [15.4.5.1). Host objects may
implement these methods in any manner unless specified otherwise; for example, one possibility is that [[Get]] and
[[Put]] for a particular host object indeed fetch and store property values but [[HasProperty]] always generates
false.

In the following algorithm descriptions, assume O is a native ECMAScript object and P is a string.
8.6.2.1 [[Get]] (P)
When the [[Get]] method of O is called with property name P, the following steps are taken:

If O doesn’t have a property with name P, go to step 4.

Get the value of the property.

Return Result(2).

If the [[Prototype]] of O is null, return undefined.

Call the [[Get]] method of [[Prototype]] with property name P.
Return Result(5).

S S

8.6.2.2 [[Put]] (P, V)
When the [[Put]] method of O is called with property P and value V, the following steps are taken:

Call the [[CanPut]] method of O with name P.

If Result(1) is false, return.

If O doesn’t have a property with name P, go to step 6.

Set the value of the property to V. The attributes of the property are not changed.
Return.

Create a property with name P, set its value to V and give it empty attributes.
Return.

Noohsrwb=

Note, however, that if O is an Array object, it has a more elaborate [[Put]] method (section [15.4.5.1).
8.6.2.3 [[CanPut]] (P)

The [[CanPut]] method is used only by the [[Put]] method.

When the [[CanPut]] method of O is called with property P, the following steps are taken:

If O doesn’t have a property with name P, go to step 4.

If the property has the ReadOnly attribute, return false.

Return true.

If the [[Prototype]] of O is null, return true.

Call the [[CanPut]] method of [[Prototype]] of O with property name P.
Return Result(5).

S N

8.6.2.4 [[HasProperty]] (P)
When the [[HasProperty]] method of O is called with property name P, the following steps are taken:

1. If O has a property with name P, return true.

34

ECMAScript Language Specification Edition 3 24-Mar-00

2. If the [[Prototype]] of O is null, return false.
3. Call the [[HasProperty]] method of [[Prototype]] with property name P.
4. Return Result(3).

8.6.2.5 [[Delete]] (P)
When the [[Delete]] method of O is called with property name P, the following steps are taken:

1. If O doesn’t have a property with name P, return true.

2. If the property has the DontDelete attribute, return false.
3. Remove the property with name P from O.

4. Return true.

8.6.2.6 [[DefaultValue]] (hint)
When the [[DefaultValue]] method of O is called with hint String, the following steps are taken:

Call the [[Get]] method of object O with argument "toString".

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), with O as the this value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of object O with argument "valueO£f".

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), with O as the this value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw a TypeError exception.

COENOORWN =

When the [[DefaultValue]] method of O is called with hint Number, the following steps are taken:

Call the [[Get]] method of object O with argument "valueO£™".

If Result(1) is not an object, go to step 5.

Call the [[Call]] method of Result(1), with O as the this value and an empty argument list.
If Result(3) is a primitive value, return Result(3).

Call the [[Get]] method of object O with argument "toString".

If Result(5) is not an object, go to step 9.

Call the [[Call]] method of Result(5), with O as the this value and an empty argument list.
If Result(7) is a primitive value, return Result(7).

Throw a TypeError exception.

CENO>ORrWN =

When the [[DefaultValue]] method of O is called with no hint, then it behaves as if the hint were Number, unless O is
a Date object (section |15.9), in which case it behaves as if the hint were String.

The above specification of [[DefaultValue]] for native objects can return only primitive values. If a host object
implements its own [[DefaultValue]] method, it must ensure that its [[DefaultValue]] method can return only primitive
values.

8.7 The Reference Type

The internal Reference type is not a language data type. It is defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon references in the
manner described here. However, a value of type Reference is used only as an intermediate result of expression
evaluation and cannot be stored as the value of a variable or property.

The Reference type is used to explain the behaviour of such operators as delete, typeof, and the assignment
operators. For example, the left-hand operand of an assignment is expected to produce a reference. The behaviour
of assignment could, instead, be explained entirely in terms of a case analysis on the syntactic form of the left-hand
operand of an assignment operator, but for one difficulty: function calls are permitted to return references. This
possibility is admitted purely for the sake of host objects. No built-in ECMAScript function defined by this
specification returns a reference and there is no provision for a user-defined function to return a reference. (Another
reason not to use a syntactic case analysis is that it would be lengthy and awkward, affecting many parts of the
specification.)

35

ECMAScript Language Specification Edition 3 24-Mar-00

Another use of the Reference type is to explain the determination of the this value for a function call.

A Reference is a reference to a property of an object. A Reference consists of two components, the base object
and the property name.

The following abstract operations are used in this specification to access the components of references:

o GetBase(V). Returns the base object component of the reference V.
o GetPropertyName(V). Returns the property name component of the reference V.

The following abstract operations are used in this specification to operate on references:
8.7.1 GetValue (V)

If Type(V) is not Reference, return V.

Call GetBase(V).

If Result(2) is null, throw a ReferenceError exception.

Call the [[Get]] method of Result(2), passing GetPropertyName(V) for the property name.
Return Result(4).

aRrwON -~

8.7.2 PutValue (V, W)

1. If Type(V) is not Reference, throw a ReferenceError exception.

2. Call GetBase(V).

3. If Result(2) is null, go to step 6.

4. Call the [[Put]] method of Result(2), passing GetPropertyName(V) for the property name and W for the value.

5. Return.

6. Call the [[Put]] method for the global object, passing GetPropertyName(V) for the property name and W for the
value.

7. Return.

8.8 The List Type

The internal List type is not a language data type. It is defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon List values in the
manner described here. However, a value of the List type is used only as an intermediate result of expression
evaluation and cannot be stored as the value of a variable or property.

The List type is used to explain the evaluation of argument lists (section [11.2.4) in new expressions and in function
calls. Values of the List type are simply ordered sequences of values. These sequences may be of any length.

8.9 The Completion Type

The internal Completion type is not a language data type. It is defined by this specification purely for expository
purposes. An implementation of ECMAScript must behave as if it produced and operated upon Completion values
in the manner described here. However, a value of the Completion type is used only as an intermediate result of
statement evaluation and cannot be stored as the value of a variable or property.

The Completion type is used to explain the behaviour of statements (break, continue, return and throw) that
perform nonlocal transfers of control. Values of the Completion type are triples of the form (type, value, target),
where type is one of normal, break, continue, return, or throw, value is any ECMAScript value or empty, and
target is any ECMAScript identifier or empty.

The term “abrupt completion” refers to any completion with a type other than normal.

36

9 Type Conversion

ECMAScript Language Specification Edition 3 24-Mar-00

The ECMAScript runtime system performs automatic type conversion as needed. To clarify the semantics of certain
constructs it is useful to define a set of conversion operators. These operators are not a part of the language; they
are defined here to aid the specification of the semantics of the language. The conversion operators are
polymorphic; that is, they can accept a value of any standard type, but not of type Reference, List, or Completion

(the internal types).

9.1 ToPrimitive

The operator ToPrimitive takes a Value argument and an optional argument PreferredType. The operator
ToPrimitive converts its value argument to a non-Object type. If an object is capable of converting to more than one
primitive type, it may use the optional hint PreferredType to favour that type. Conversion occurs according to the

following table:

Input Type Result

Undefined The result equals the input argument (no conversion).

Null The result equals the input argument (no conversion).

Boolean The result equals the input argument (no conversion).

Number The result equals the input argument (no conversion).

String The result equals the input argument (no conversion).

Object Return a default value for the Object. The default value of an object is
retrieved by calling the internal [[DefaultValue]] method of the object,
passing the optional hint PreferredType. The behaviour of the
[[DefaultValue]] method is defined by this specification for all native
ECMAScript objects (section E.6.2.6;.

9.2 ToBoolean

The operator ToBoolean converts its argument to a value of type Boolean according to the following table:

Input Type Result

Undefined false

Null false

Boolean The result equals the input argument (no conversion).

Number The result is false if the argument is +0, -0, or NaN; otherwise the result is
true.

String The result is false if the argument is the empty string (its length is zero);
otherwise the result is true.

Object true

9.3 ToNumber

The operator ToNumber converts its argument to a value of type Number according to the following table:

Input Type Result
Undefined NaN
Null +0
Boolean The result is 1 if the argument is true. The result is +0 if the argument is
false.
Number The result equals the input argument (no conversion).
String See grammar and note below.
Object Apply the following steps:
1. Call ToPrimitive(input argument, hint Number).
2. Call ToNumber(Result(1)).
3. Return Result(2).

37

ECMAScript Language Specification Edition 3 24-Mar-00

9.3.1 ToNumber Applied to the String Type

ToNumber applied to strings applies the following grammar to the input string. If the grammar cannot interpret the
string as an expansion of StringNumericLiteral, then the result of ToNumber is NaN.

StringNumericLiteral :::
StrWhiteSpacep
StrWhiteSpace,p; StrNumericLiteral StriWhiteSpace

StrWhiteSpace :::
StrWhiteSpaceChar StrWhiteSpace;

StrWhiteSpaceChar :::
<TAB>
<SP>
<NBSP>
<FF>
<VT>
<CR>
<[F>
<[S>
<PS>
<USP>

StrNumericLiteral :::
StrDecimallLiteral
HexIntegerLiteral

StrDecimalLiteral :::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimallLiteral
- StrUnsignedDecimallLiteral

StrUnsignedDecimalLiteral :::
Infinity
DecimalDigits . DecimalDigits,p; ExponentPart,
. DecimalDigits ExponentPart,p;
DecimalDigits ExponentPart,p;

DecimalDigits :::
DecimalDigit
DecimalDigits DecimalDigit

DecimalDigit ::: one of
01 2 3 4 5 6 7 8 9

ExponentPart :::
Exponentindicator Signedinteger

Exponentindicator ::: one of
e E

Signedinteger :::
DecimalDigits
+ DecimalDigits
- DecimalDigits

HexIntegerLiteral :::
0x HexDigit
0X HexDigit
HexIntegerLiteral HexDigit

38

ECMAScript Language Specification Edition 3 24-Mar-00

HexDigit ::: one of
0 1 2 3 4 5 6 7 8 9 a b ¢ d4d e £ A B C D E F

Some differences should be noted between the syntax of a StringNumericLiteral and a NumericLiteral (section

F.8.3):

o A StringNumericLiteral may be preceded and/or followed by white space and/or line terminators.
o A StringNumericLiteral that is decimal may have any number of leading 0 digits.

o A StringNumericLiteral that is decimal may be preceded by + or - to indicate its sign.

o A StringNumericLiteral that is empty or contains only white space is converted to +0.

The conversion of a string to a number value is similar overall to the determination of the number value for a
numeric literal (section , but some of the details are different, so the process for converting a string numeric
literal to a value of Number type is given here in full. This value is determined in two steps: first, a mathematical
value (MV) is derived from the string numeric literal; second, this mathematical value is rounded as described
below.

e The MV of StringNumericLiteral ::: [empty] is 0.
e The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

e The MV of StringNumericLiteral ::: StrWhiteSpace,,; StrNumericLiteral StriWhiteSpace, is the MV of
StrNumericLiteral, no matter whether white space is present or not.

e The MV of StrNumericLiteral ::: StrDecimallLiteral is the MV of StrDecimallLiteral.

e The MV of StrNumericLiteral ::: HexIntegerLiteral is the MV of HexIntegerLiteral.

e The MV of StrDecimallLiteral ::: StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

e The MV of StrDecimalLiteral::: + StrUnsignedDecimalLiteral is the MV of StrUnsignedDecimalLiteral.

e The MV of StrDecimalLiteral::: - StrUnsignedDecimallLiteral is the negative of the MV of
StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimallLiteral is 0, the negative of this MV is also
0. The rounding rule described below handles the conversion of this sign less mathematical zero to a floating-
point +0 or —0 as appropriate.)

e The MV of StrUnsignedDecimalLiteral::: Infinity is 10 a value so large that it will round to +oo).

e The MV of StrUnsignedDecimalLiteral::: DecimalDigits. is the MV of DecimalDigits.

e The MV of StrUnsignedDecimallLiteral::: DecimalDigits . DecimalDigits is the MV of the first DecimalDigits plus

(the MV of the second DecimalDigits times 10™"), where n is the number of characters in the second
DecimalDigits.

e The MV of StrUnsignedDecimalLiteral::: DecimalDigits . ExponentPart is the MV of DecimalDigits times 10°,
where e is the MV of ExponentPart.
e The MV of StrUnsignedDecimallLiteral::: DecimalDigits . DecimalDigits ExponentPart is (the MV of the first

DecimalDigits plus (the MV of the second DecimalDigits times 107")) times 10°, where n is the number of
characters in the second DecimalDigits and e is the MV of ExponentPart.

e The MV of StrUnsignedDecimalLiteral:::. DecimalDigits is the MV of DecimalDigits times 10", where n is the
number of characters in DecimalDigits.

e The MV of StrUnsignedDecimallLiteral::: . DecimalDigits ExponentPart is the MV of DecimalDigits times 10°™",
where n is the number of characters in DecimalDigits and e is the MV of ExponentPart.

e The MV of StrUnsignedDecimallLiteral::: DecimalDigits is the MV of DecimalDigits.

e The MV of StrUnsignedDecimalLiteral::: DecimalDigits ExponentPart is the MV of DecimalDigits times 10°, where
e is the MV of ExponentPart.

e The MV of DecimalDigits ::: DecimalDigit is the MV of DecimalDigit.

e The MV of DecimalDigits ::: DecimalDigits DecimalDigit is (the MV of DecimalDigits times 10) plus the MV of
DecimalDigit.

e The MV of ExponentPart ::: Exponentindicator Signedinteger is the MV of Signedinteger.
e The MV of Signedinteger ::: DecimalDigits is the MV of DecimalDigits.

e The MV of Signedinteger ::: + DecimalDigits is the MV of DecimalDigits.

e The MV of Signedinteger ::: - DecimalDigits is the negative of the MV of DecimalDigits.
e The MV of DecimalDigit ::: 0 or of HexDigit ::: 0 is 0.

e The MV of DecimalDigit ::: 1 or of HexDigit ::: 1 is 1.

e The MV of DecimalDigit ::: 2 or of HexDigit ::: 2 is 2.

10000
(

39

ECMAScript Language Specification Edition 3 24-Mar-00

e The MV of DecimalDigit ::: 3 or of HexDigit ::: 3 is 3.

e The MV of DecimalDigit ::: 4 or of HexDigit ::: 4 is 4.

e The MV of DecimalDigit ::: 5 or of HexDigit ::: 5 is 5.

e The MV of DecimalDigit ::: 6 or of HexDigit ::: 6 is 6.

e The MV of DecimalDigit ::: 7 or of HexDigit ::: 7 is 7.

e The MV of DecimalDigit ::: 8 or of HexDigit ::: 8 is 8.

e The MV of DecimalDigit ::: 9 or of HexDigit ::: 9 is 9.

e The MV of HexDigit ::: a or of HexDigit ::: A is 10.

e The MV of HexDigit ::: b or of HexDigit ::: B is 11.

e The MV of HexDigit ::: ¢ or of HexDigit ::: cis 12.

e The MV of HexDigit ::: d or of HexDigit ::: D is 13.

e The MV of HexDigit ::: e or of HexDigit ::: E is 14.

e The MV of HexDigit ::: £ or of HexDigit ::: F is 15.

e The MV of HexIntegerLiteral ::: 0x HexDigit is the MV of HexDigit.
e The MV of HexIntegerLiteral ::: 0X HexDigit is the MV of HexDigit.

o The MV of HexIntegerLiteral ::: HexIntegerLiteral HexDigit is (the MV of HexIntegerLiteral times 16) plus the MV
of HexDigit.

Once the exact MV for a string numeric literal has been determined, it is then rounded to a value of the Number
type. If the MV is 0, then the rounded value is +0 unless the first non white space character in the string numeric
literal is ‘-’, in which case the rounded value is —0. Otherwise, the rounded value must be the number value for the
MV (in the sense defined in section , unless the literal includes a StrUnsignedDecimalLiteral and the literal has
more than 20 significant digits, in which case the number value may be either the number value for the MV of a
literal produced by replacing each significant digit after the 20th with a 0 digit or the number value for the MV of a
literal produced by replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the
20th digit position. A digit is significant if it is not part of an ExponentPart and

e jtis not 0; or
o there is a nonzero digit to its left and there is a nonzero digit, not in the ExponentPart, to its right.

9.4 Tolnteger
The operator Tolnteger converts its argument to an integral numeric value. This operator functions as follows:

1. Call ToNumber on the input argument.

2. If Result(1) is NaN, return +0.

3. If Result(1) is +0, =0, +eo, Or —o, return Result(1).
4. Compute sign(Result(1)) * floor(abs(Result(1))).
5. Return Result(4).

9

.5 ToInt32: (Signed 32 Bit Integer)

The operator Tolnt32 converts its argument to one of 2* integer values in the range —2°" through 2*'-1, inclusive.
This operator functions as follows:

Call ToNumber on the input argument.

If Result(1) is NaN, +0, -0, +oo0, Or —oo, return +0.

Compute sign(Result(1)) * roor(abs(ResuIt(1)))

Compute Result(3) modulo 2%% that is, a finite integer value k of Number type with positive sign and less than
23 in magnitude such the mathemahcal difference of Result(3) and k is mathematically an integer multiple of
2

5 If Result(4) is greater than or equal to 2%" return Result(4)- 2%2, otherwise return Result(4).

A

NOTE Given the above definition of Tolnt32:

The Tolnt32 operation is idempotent: if applied to a result that it produced, the second application leaves that value
unchanged.

40

ECMAScript Language Specification Edition 3 24-Mar-00

Tolnt32(ToUint32(x)) is equal to Tolnt32(x) for all values of x. (It is to preserve this latter property that +eo and —oo are
mapped to +0.)

Tolnt32 maps -0 to +0.

9.6 ToUint32: (Unsigned 32 Bit Integer)

The operator ToUint32 converts its argument to one of 2°? integer values in the range 0 through 2%*-1, inclusive.
This operator functions as follows:

Call ToNumber on the input argument.

If Result(1) is NaN, +0, —0, +eo, Or —oo, return +0.

Compute sign(Result(1)) * floor(abs(Result(1))).

Compute Result(3) modulo 2% that is, a finite integer value k of Number type with positive sign and less than
222 in magnitude such the mathematical difference of Result(3) and k is mathematically an integer multiple of
27
5. Return Result(4).

PON=

NOTE Given the above definition of ToUInt32:
Step 5 is the only difference between ToUint32 and Tolnt32.

The ToUint32 operation is idempotent: if applied to a result that it produced, the second application leaves that value
unchanged.

ToUint32(Tolnt32(x)) is equal to ToUint32(x) for all values of x. (It is to preserve this latter property that +eo and —e are
mapped to +0.)

ToUint32 maps -0 to +0.

9.7 ToUint16: (Unsigned 16 Bit Integer)

The operator ToUint16 converts its argument to one of 2'® integer values in the range 0 through 2'°-1, inclusive.
This operator functions as follows:

Call ToNumber on the input argument.

If Result(1) is NaN, +0, —0, +oo, Or —oo, return +0.

Compute sign(Result(1)) * floor(abs(Result(1))).

Compute Result(3) modulo 2% that is, a finite integer value k of Number type with positive sign and less than
212 in magnitude such the mathematical difference of Result(3) and k is mathematically an integer multiple of
27
5. Return Result(4).

PN =

NOTE Given the above definition of ToUint16:
The substitution of 2° for 2% in step 4 is the only difference between ToUint32 and ToUint16.

ToUint16 maps -0 to +0.

9.8 ToString

The operator ToString converts its argument to a value of type String according to the following table:

41

ECMAScript Language Specification Edition 3 24-Mar-00

Input Type Result
Undefined "undefined"
Null "null"
Boolean If the argument is true, then the result is "true".
If the argument is false, then the result is "false".
Number See note below.
String Return the input argument (no conversion)
Object Apply the following steps:
Call ToPrimitive(input argument, hint String).
Call ToString(Result(1)).
Return Result(2).

9.8.1 ToString Applied to the Number Type

The operator ToString converts a number m to string format as follows:

oD

10.

If mis NaN, return the string "NaN".

If mis +0 or -0, return the string "o".

If m is less than zero, return the string concatenation of the string »-" and ToString(-m).

If m is infinity, return the string "Infinity".

Otherwise, let n, k, and s be integers such that k > 1, 10°" < s < 10X, the number value for s x 10"* is m, and k
is as small as possible. Note that k is the number of digits in the decimal representation of s, that s is not
divisible by 10, and that the least significant digit of s is not necessarily uniquely determined by these criteria.
If k< n <21, return the string consisting of the k digits of the decimal representation of s (in order, with no
leading zeroes), followed by n—k occurrences of the character ‘0.

If 0 < n <21, return the string consisting of the most significant n digits of the decimal representation of s,
followed by a decimal point ‘.’, followed by the remaining k—n digits of the decimal representation of s.

If -6 < n <0, return the string consisting of the character ‘0’, followed by a decimal point *.’, followed by —n
occurrences of the character ‘0’, followed by the k digits of the decimal representation of s.

Otherwise, if k = 1, return the string consisting of the single digit of s, followed by lowercase character ‘e’,
followed by a plus sign ‘+” or minus sign ‘—’ according to whether n—1 is positive or negative, followed by the
decimal representation of the integer abs(n—1) (with no leading zeros).

Return the string consisting of the most significant digit of the decimal representation of s, followed by a decimal
point ‘.’, followed by the remaining k—1 digits of the decimal representation of s, followed by the lowercase
character ‘e’, followed by a plus sign ‘+’ or minus sign ‘—" according to whether n—1 is positive or negative,
followed by the decimal representation of the integer abs(n—1) (with no leading zeros).

NOTE The following observations may be useful as guidelines for implementations, but are not part of the normative
requirements of this standard.

42

If x is any number value other than -0, then ToNumber(ToString(x)) is exactly the same number value as x.
The least significant digit of s is not always uniquely determined by the requirements listed in step 5.

For implementations that provide more accurate conversions than required by the rules above, it is recommended that the
following alternative version of step 5 be used as a guideline:

Otherwise, let n, k, and s be integers such that k > 1, 10" <s < 10k, the number value for s x 10" ¥ is m, and k is as
small as possible. If there are multiple possibilities for s, choose the value of s for which s x 10"* is closest in value to
m. If there are two such possible values of s, choose the one that is even. Note that k is the number of digits in the
decimal representation of s and that s is not divisible by 10.

Implementors of ECMAScript may find useful the paper and code written by David M. Gay for binary-to-decimal conversion
of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical Analysis Manuscript 90-
10. AT&T Bell Laboratories (Murray Hill, New Jersey). November 30, 1990. Available as http://cm.bell-
labs.com/cm/cs/doc/90/4-10.ps.gz. Associated code available as http://cm.bell-
labs.com/netlib/fp/dtoa.c.gz and as http://cm.bell-labs.com/netlib/fp/g fmt.c.gz and may
also be found at the various netlib mirror sites.

9.9 ToObject

ECMAScript Language Specification Edition 3 24-Mar-00

The operator ToObject converts its argument to a value of type Object according to the following table:

Input Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Create a new Boolean object whose [[value]] property is set to the value of
the boolean. See section[15.6|for a description of Boolean objects.

Number Create a new Number object whose [[value]] property is set to the value of
the number. See section [i5.7]for a description of Number objects.

String Create a new String object whose [[value]] property is set to the value of
the string. See section |15.5|for a description of String objects.

Object The result is the input argument (no conversion).

43

ECMAScript Language Specification Edition 3 24-Mar-00

10 Execution Contexts

When control is transferred to ECMAScript executable code, control is entering an execution context. Active
execution contexts logically form a stack. The top execution context on this logical stack is the running execution
context.

10.1 Definitions
10.1.1 Function Objects
There are two types of Function objects:

e Program functions are defined in source text by a FunctionDeclaration or created dynamically either by using a
FunctionExpression or by using the built-in Function object as a constructor.

¢ Internal functions are built-in objects of the language, such as parseInt and Math.exp. An implementation
may also provide implementation-dependent internal functions that are not described in this specification. These
functions do not contain executable code defined by the ECMAScript grammar, so they are excluded from this
discussion of execution contexts.

10.1.2 Types of Executable Code
There are three types of ECMAScript executable code:

e Global code is source text that is treated as an ECMAScript Program. The global code of a particular Program
does not include any source text that is parsed as part of a FunctionBody.

e FEval code is the source text supplied to the built-in eval function. More precisely, if the parameter to the built-in
eval function is a string, it is treated as an ECMAScript Program. The eval code for a particular invocation of
eval is the global code portion of the string parameter.

e Function code is source text that is parsed as part of a FunctionBody. The function code of a particular
FunctionBody does not include any source text that is parsed as part of a nested FunctionBody. Function code
also denotes the source text supplied when using the built-in Function object as a constructor. More precisely,
the last parameter provided to the Function constructor is converted to a string and treated as the
FunctionBody. If more than one parameter is provided to the Function constructor, all parameters except the
last one are converted to strings and concatenated together, separated by commas. The resulting string is
interpreted as the FormalParameterList for the FunctionBody defined by the last parameter. The function code for
a particular instantiation of a Function does not include any source text that is parsed as part of a nested
FunctionBody.

10.1.3 Variable Instantiation

Every execution context has associated with it a variable object. Variables and functions declared in the source text
are added as properties of the variable object. For function code, parameters are added as properties of the
variable object.

Which object is used as the variable object and what attributes are used for the properties depends on the type of
code, but the remainder of the behaviour is generic. On entering an execution context, the properties are bound to
the variable object in the following order:

e For function code: for each formal parameter, as defined in the FormalParameterList, create a property of the
variable object whose name is the Identifier and whose attributes are determined by the type of code. The values
of the parameters are supplied by the caller as arguments to [[Call]]. If the caller supplies fewer parameter values
than there are formal parameters, the extra formal parameters have value undefined. If two or more formal
parameters share the same name, hence the same property, the corresponding property is given the value that
was supplied for the last parameter with this name. If the value of this last parameter was not supplied by the
caller, the value of the corresponding property is undefined.

45

ECMAScript Language Specification Edition 3 24-Mar-00

e For each FunctionDeclaration in the code, in source text order, create a property of the variable object whose
name is the Identifier in the FunctionDeclaration, whose value is the result returned by creating a Function object
as described in section and whose attributes are determined by the type of code. If the variable object
already has a property with this name, replace its value and attributes. Semantically, this step must follow the
creation of FormalParameterList properties.

e For each VariableDeclaration or VariableDeclarationNoln in the code, create a property of the variable object
whose name is the Identifier in the VariableDeclaration or VariableDeclarationNoln, whose value is undefined
and whose attributes are determined by the type of code. If there is already a property of the variable object with
the name of a declared variable, the value of the property and its attributes are not changed. Semantically, this
step must follow the creation of the FormalParameterList and FunctionDeclaration properties. In particular, if a
declared variable has the same name as a declared function or formal parameter, the variable declaration does
not disturb the existing property.

10.1.4 Scope Chain and Identifier Resolution

Every execution context has associated with it a scope chain. A scope chain is a list of objects that are searched
when evaluating an Identifier. When control enters an execution context, a scope chain is created and populated
with an initial set of objects, depending on the type of code. During execution within an execution context, the scope
chain of the execution context is affected only by with statements (section 12.10) and catch clauses (section

:

During execution, the syntactic production PrimaryExpression : Identifier is evaluated using the following algorithm:

1. Get the next object in the scope chain. If there isn't one, go to step 5.

2. Call the [[HasProperty]] method of Result(1), passing the Identifier as the property.

3. If Result(2) is true, return a value of type Reference whose base object is Result(1) and whose property name
is the Identifier.

4. Gotostep 1.

5. Return a value of type Reference whose base object is null and whose property name is the Identifier.

The result of evaluating an identifier is always a value of type Reference with its member name component equal to
the identifier string.

10.1.5 Global Object

There is a unique global object (section [15.1), which is created before control enters any execution context. Initially
the global object has the following properties:

o Built-in objects such as Math, String, Date, parselnt, etc. These have attributes { DontEnum }.

o Additional host defined properties. This may include a property whose value is the global object itself; for
example, in the HTML document object model the window property of the global object is the global object itself.

As control enters execution contexts, and as ECMAScript code is executed, additional properties may be added to
the global object and the initial properties may be changed.

10.1.6 Activation Object

When control enters an execution context for function code, an object called the activation object is created and
associated with the execution context. The activation object is initialised with a property with name arguments and
attributes { DontDelete }. The initial value of this property is the arguments object described below.

The activation object is then used as the variable object for the purposes of variable instantiation.
The activation object is purely a specification mechanism. It is impossible for an ECMAScript program to access the
activation object. It can access members of the activation object, but not the activation object itself. When the call

operation is applied to a Reference value whose base object is an activation object, null is used as the this value
of the call.

46

ECMAScript Language Specification Edition 3 24-Mar-00
10.1.7 This

There is a this value associated with every active execution context. The this value depends on the caller and the
type of code being executed and is determined when control enters the execution context. The this value
associated with an execution context is immutable.

10.1.8 Arguments Object

When control enters an execution context for function code, an arguments object is created and initialised as
follows:

e The value of the internal [[Prototype]] property of the arguments object is the original Object prototype object, the
one that is the initial value of Object.prototype (section|15.2.3.1).

o A property is created with name callee and property attributes { DontEnum }. The initial value of this property is
the Function object being executed. This allows anonymous functions to be recursive.

o A property is created with name length and property attributes { DontEnum }. The initial value of this property is
the number of actual parameter values supplied by the caller.

o For each non-negative integer, arg, less than the value of the 1ength property, a property is created with name
ToString(arg) and property attributes { DontEnum }. The initial value of this property is the value of the
corresponding actual parameter supplied by the caller. The first actual parameter value corresponds to arg = 0,
the second to arg = 1, and so on. In the case when arg is less than the number of formal parameters for the
Function object, this property shares its value with the corresponding property of the activation object. This
means that changing this property changes the corresponding property of the activation object and vice versa.

10.2 Entering An Execution Context

Every function and constructor call enters a new execution context, even if a function is calling itself recursively.
Every return exits an execution context. A thrown exception, if not caught, may also exit one or more execution
contexts.

When control enters an execution context, the scope chain is created and initialised, variable instantiation is
performed, and the this value is determined.

The initialisation of the scope chain, variable instantiation, and the determination of the this value depend on the
type of code being entered.

10.2.1 Global Code

o The scope chain is created and initialised to contain the global object and no others.

e Variable instantiation is performed using the global object as the variable object and using property attributes {
DontDelete }.

e The this value is the global object.
10.2.2 Eval Code

When control enters an execution context for eval code, the previous active execution context, referred to as the
calling context, is used to determine the scope chain, the variable object, and the this value. If there is no calling
context, then initialising the scope chain, variable instantiation, and determination of the this value are performed
just as for global code.

e The scope chain is initialised to contain the same objects, in the same order, as the calling context's scope chain.
This includes objects added to the calling context's scope chain by with statements and catch clauses.

o Variable instantiation is performed using the calling context's variable object and using empty property attributes.
e The this value is the same as the this value of the calling context.

10.2.3 Function Code

e The scope chain is initialised to contain the activation object followed by the objects in the scope chain stored in
the [[Scope]] property of the Function object.

47

ECMAScript Language Specification Edition 3 24-Mar-00

¢ Variable instantiation is performed using the activation object as the variable object and using property attributes
{ DontDelete }.

e The caller provides the this value. If the this value provided by the caller is not an object (including the case
where it is null), then the this va